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The paper introduces a new test for testing structures of covari-
ances for high dimensional vectors and the data dimension can be
much larger than the sample size. Under proper normalization, cen-
tral and non-central limit theorems are established. The asymptotic
theory is attained without imposing any explicit restriction between
data dimension and sample size. To facilitate the related statistical
inference, we propose the balanced Rademacher weighted differenc-
ing scheme, which is also the delete-half jackknife, to approximate
the distribution of the proposed test statistics. We also develop a
new testing procedure for substructures of precision matrices. The
simulation results show that the tests outperform the exiting meth-
ods both in terms of size and power. Our test procedure is applied to
a colorectal cancer dataset.

1. Introduction. Driven by a diversity of contemporary scientific ap-
plications, analysis of high dimensional data has emerged as one of the most
important and active areas in statistics. High-dimensional data, where the
dimension can be much larger than the sample size, are encountered in ge-
nomics, medical imaging, financial economics and others. Knowledge of the
covariance structure is essential in the associated statistical inference. For in-
stance, structural assumptions are needed for estimation of high-dimensional
covariance matrices, for example the banding method in Wu and Pourahma-
di (2009) and Bickel and Levina (2008); tapering in Furrer and Bengtsson
(2007) and Cai, Zhang and Zhou (2010); regularizing principal components
in Cai, Ma and Wu (2015); factoring in Fan, Fan and Lv (2008) and Fan,
Liao and Mincheva (2013). In addition, some researchers considered para-
metric models of covariance structures, such as autoregressive moving av-
erage, compound symmetry and Matérn class covariance function (e.g., see
Gneiting, Kleiber and Schlather (2010), Wiesel, Bibi and Globerson (2013)
and Pourahmadi (2013)).
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1.1. Testing covariance structure. Let X1, . . . ,Xn be independent and
identically distributed (i.i.d.) samples drawn from a p-dimensional distri-
bution with mean µ and covariance matrix Σ = (σjk)j,k≤p. A fundamental
problem in the inference of covariance is to test:

H0 : σjk = σjk,0 for all (j, k) ∈ S,(1.1)

where σjk,0 are pre-specified or from certain parametric families σjk,0(θ) for
some θ, S is the index set of covariance structure of interest. An incorrect-
ly specified covariance structure could result in inaccurate statistical infer-
ence. One motivation of such models comes from spatial statistics and ma-
chine learning, where parametric covariance functions are widely used, such
as Matérn covariance functions f(m) = σ22−θΓ(θ)−1(

√
θm/ρ)θKθ(

√
θm/ρ)

(Stein (1999)) and the rational quadratic covariance function f(m) = (1 +
m2/(θσ2))−θ/2 (Rasmussen and Williams (2006)), where m is the distance,
Γ is the gamma function, Kθ is the modified Bessel function of the second
kind, and σ2, ρ and θ are non-negative parameters of the covariance. An
important task is to test the validity of such parametric forms.

In the classical fixed dimensional setting, when the data is Gaussian, the
conventional likelihood ratio test (LRT) can be used to access the struc-
ture of the covariance and it has certain optimality properties; see Anderson
(2003) for details. When the dimension p grows with the sample size n, the
standard LRT is no longer applicable. There has been a set of high dimen-
sional tests on different covariance structures. Bai et al. (2009) proposed a
corrected LRT for the identity hypothesis H0 : Σ = I and demonstrated
that the test is valid when Xi are Gaussian and p/n→ c ∈ (0, 1). The result
is further extended in Zhang, Peng and Wang (2013) and Zheng, Bai and
Yao (2015). Ledoit and Wolf (2002) showed the test in John (1971, 1972) for
sphericity with H0 : Σ = σ2I is consistent even when p/n→ c for a positive
constant c. Chen, Zhang and Zhong (2010) proposed tests for sphericity and
identity of covariance matrices without normality assumption and without
specifying an explicit relationship between p and n. For normally distribut-
ed data, Jiang (2004) proposed testing for diagonal Σ by considering the
coherence statistic Ln,p = max1≤j<k≤p|r̂jk|, where r̂jk is the (j, k)-th sam-
ple correlation. Cai and Jiang (2011) extended the test of Jiang (2004) for
the bandedness of Σ based on the test statistic Ln,p,κ = max|j−k|≥κ|r̂jk| for
Gaussian vectors. Xiao and Wu (2013) extended the results on more testing
problems, such as stationarity, bandedness and tapering, and allowed non-
Gaussianity. Qiu and Chen (2012) proposed a test based on a U-statistic
which is an unbiased estimator of

∑
|j−k|≥κ σ

2
jk for testing bandedness. Cai

and Ma (2013) studied the optimality of one sample tests for H0 : Σ = I.
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Li and Chen (2012) considered tests for the equality of covariance matrices.
More recently, in regression setting, to access the adequacy of some spec-
ified parametric forms of error covariance structures with H0 : Σ = Σ(θ)
for unknown parameter θ, Zhong et al. (2017) proposed a bias adjusted test
based on tr{(Σ− Σ(θ))2} for normally distributed random vectors. He and
Chen (2016) proposed a test procedure that focuses on testing along the
super-diagonals of the covariance matrix to detect sparse signals and para-
metric structures. This was further extended to the case of two samples in
He and Chen (2018). In many applications, the diagonal elements of the
covariance may not be useful in the testing. This motivates us to develop a
test to examine the appropriateness of covariance structure specification via
the off-diagonals of the covariance matrices.

Define the sample mean X̄ = n−1
∑n

i=1Xi and the sample covariance ma-

trix Σ̂ = n−1
∑n

i=1(Xi − X̄)(Xi − X̄)T = (σ̂jk)j,k≤p. We propose a test for
the hypothesis H0 in (1.1) based on an unbiased estimator of the quadratic
form

∑
(j,k)∈S(σjk − σjk,0)2. We first consider testing for off-diagonal co-

variance structures. A distributional approximation for the test statistic of
Gaussian vectors with same covariance structure is obtained. It is shown that
our Gaussian approximation theorem covers the cases where the test statistic
does not have a limit Gaussian distribution as n→∞ and p→∞. In some
cases, after a suitable normalization, the test statistic could have a standard
normal distribution as the limiting distribution, but the approximation to
a standard normal distribution requires some restrictions on the covariance
structure Σ. We provide a sufficient and necessary condition, which extends
the sufficient condition for Gaussian data in Cai and Ma (2013). It is also
worth noting that the proposed test does not require explicit conditions in
the relationship between p and n. The power of the test is also investigat-
ed. In order to overcome the difficulty to consistently estimate the fourth
moments of Xi and quantify the difference of the c.d.f of the test statistic
and that by estimated moments, we propose using the balanced Rademach-
er weighted differencing scheme, called half-sampling; see also Wu, Lou and
Han (2018). Wu (1990) showed that in the one-dimensional case the his-
togram of the delete-d jackknife with a suitable d, the number of deleted
observations, can be consistent in estimating the sampling distribution for
linear and certain non-linear statistics (in particular, U-statistics), and is op-
timal if d is taken to be on the same order as the sample size. We extend his
idea and show that the balanced Rademacher weighted differencing scheme
(half-sampling approach), which is also the delete-n/2 Jackknife, leads to
a consistent estimator of the distribution function of the test statistic. The
proofs of the validity of the half-sampling approach require a more involved
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Gaussian approximation result.
To study the case where σjk,0 in (1.1) are from certain parametric families

σjk,0(θ) for some θ, we first estimate the involved parameters, then establish
the distributional approximation of the test statistic with estimated param-
eters and implement the half-sampling procedure accordingly. In particular,
the asymptotic mean of the test statistic varies for different parametric form-
s and different relationship between n and p, which may not vanish due to
the bias induced by the estimation of unknown parameters. It is worth not-
ing that our half sampling approach avoids the estimation of the unknown
mean of the test statistic, and thus can be easily applied to test paramet-
ric covariance functions. The numerical results indicate that our proposed
test estimates size accurately. In comparison, the test in Zhong et al. (2017)
tends to overestimate the size at low nominal levels.

Besides testing for off-diagonal covariance structures, we also develop a
test for sub-matrices. The interest on such a test arises naturally in ap-
plications in genomics and other fields, when we are interested in knowing
the between pathway associations in genomics where each pathway stands
for a group of genes, or studying the relationships between a diverse range
of disease phenotypes and genomic markers in PheWAS (see, e.g., Kelley
and Ideker (2005)). Asymptotic properties of the test are derived and a
half-sampling estimator of the distribution function of the test statistic is
studied.

1.2. Testing precision matrices. Precision matrix plays a fundamental
role in many high dimensional inference problems. It is of significant inter-
est to understand structure or substructure of the precision matrices. For
example, under the Gaussian graphical model framework, a submatrix of the
precision matrix characterizes the network of two groups, which measures
the conditional dependence network structure of two groups of variables.
See De la Fuente (2010), Hudson, Reverter and Dalrymple (2009), Ideker
and Krogan (2012), Jia et al. (2011), Li, Agarwal and Rajagopalan (2008),
Ren et al. (2015), among others. One can also use it to study interactions
between two groups that adjust for effects from other variables.

Let Ω = Σ−1 = (ωjk)j,k≤p be the precision matrix. Testing the hypothesis
H0 : Ω = Ω0 for a given Ω0 is equivalent to testing H0 : Σ = Σ0, which has
been well studied under various alternatives. However, in many applications,
one aims at studying the group structure of the network, by testing a given
substructure of the precision matrix Ω,

H0 : ωjk = 0 for all (j, k) ∈ S,(1.2)

where S is an index set. In such cases, it is essential to work on the precision
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matrix directly, instead of the covariance matrix. Testing procedures on the
covariance matrix cannot leverage information on the given substructure of
the precision matrix. More importantly, due to the notable difference be-
tween conditional and unconditional dependencies, the various procedures
for testing the covariance matrix may not be well adapted to testing spe-
cific substructure of the precision matrix. To the best of our knowledge,
there are no currently available methods with theoretical guarantees to in-
fer about substructure of the precision matrix when the dimension of the
substructure can go to infinity. Xia, Cai and Cai (2015) proposed a proce-
dure for testing the differential network by using the maximum entrywise
deviation of the precision matrix. Xia, Cai and Cai (2018) considered testing
a given submatrix of the precision matrix under a Gaussian graphical model
when the dimension of the submatrix is fixed. In our paper, we develop a
novel testing procedure for substructures of the precision matrices. The test
statistic is based on the Frobenius norm of a substructure estimate of the
precision matrix without imposing any structure assumptions. Theoretical
properties under sub-Gaussian tails and linear process model are discussed.
The testing procedure is easy to implement.

1.3. Organization of the paper. The paper is organized as follows. Sec-
tion 2 introduces the procedure for testing off-diagonal covariance structure
and its asymptotic properties of the test statistic and the theoretical prop-
erties of the half-sampling estimator. Properties of the test for parametric
covariance functions are presented in Sections 3. A new testing procedure for
a given substructure of the precision matrix is proposed and its theoretical
properties are presented in Section 4. Numerical performance of the tests
are given in Section 5. The readers are referred to Appendix (supplemen-
tary material) Section A and B for properties of the test for the off-diagonal
sub-matrix, and power evaluations, respectively. A real data example is il-
lustrated in Appendix C. Appendix D includes more simulation results. All
technical details are relegated to Appendix E.

1.4. Notation. Throughout this paper, for a matrix A = (aij) write
|A|∞ = maxi,j |aij | and the Frobenius norm |A|F = (

∑
ij a

2
ij)

1/2. For a

vector x = (x1, ..., xp)
T , define |x| = |x|2 = (x2

1 + ... + x2
p)

1/2. Let ξ =

(ξ1, ..., ξp)
T be a random vector. Write ξ ∈ Lm, m ≥ 1, if the m-norm

‖ξ‖m := (E|ξ|m)1/m < ∞. For two sequences of real numbers {an} and
{bn}, write an = O(bn) (resp. an � bn) if there exists a constant C such that
|an| ≤ C|bn| (resp. 1/C ≤ an/bn ≤ C) holds for all sufficiently large n, and
write an = o(bn) if limn→∞ an/bn = 0. Let dae = min{k ∈ Z : k ≥ a}.
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2. Testing Off-diagonal Covariance Structure.

2.1. Overview. A natural test statistic for the hypothesis H0 in (1.1)
is based on the quadratic form

∑
(j,k)∈S(σ̂jk − σjk,0)2. It is noted that∑

(j,k)∈S(σ̂jk − σjk,0)2 is a biased estimator of
∑

(j,k)∈S(σjk − σjk,0)2, since

E(σ̂jk − σjk,0)2 = var(σ̂jk) + (σjk − σjk,0)2. Following the spirit of Chen,
Zhang and Zhong (2010) and Li and Chen (2012), we propose

TS =
∑

(j,k)∈S

Mjk,(2.1)

which is an unbiased estimator of
∑

(j,k)∈S(σjk − σjk,0)2, where

Mjk =
1

P 1
n

∗∑
i1,i2

Xi1jXi1kXi2jXi2k −
2

P 2
n

∗∑
i1,i2,i3

Xi1jXi2jXi2kXi3k(2.2)

− 2

n
σjk,0

n∑
i1

Xi1jXi1k +
2

P 1
n

σjk,0

∗∑
i1,i2

Xi1jXi2k + σ2
jk,0

+
1

P 3
n

∗∑
i1,i2,i3,i4

Xi1jXi2jXi3kXi4k and P kn :=
n∏

j=n−k
j.

Throughout this paper,
∑∗ denotes summation over mutually different sub-

scripts shown, for example,
∑∗

i1,i2,i3
denotes summation over {(i1, i2, i3) :

i1 6= i2, i2 6= i3, i1 6= i3, 1 ≤ i1, i2, i3 ≤ n}. Elementary derivations show
that EMjk = (σjk − σjk,0)2 for all 1 ≤ j, k ≤ p, then TS is unbiased for∑

(j,k)∈S(σjk − σjk,0)2. Besides the unbiasedness, TS is invariant under the
location shift. This means that, without loss of generality, we can assume
µ = EXi = 0 in the rest of the paper. To calculate TS , it is computationally
more efficient to use an equivalent formula given by Himeno and Yamada
(2014) which reduces the computational cost from O(n4) to O(n).

We reject H0 if TS exceeds certain cutoff values. The problem of deriving
asymptotic distribution of TS is open. In many of earlier papers it is assumed
that Σ0 has special structures such as being diagonal or spheric and/or Xi

is Gaussian or has independent entries. Here we shall obtain an asymptotic
theory for TS for Volterra process model, a generalization of linear process
models, which will be specified in this section.

Let us first consider testing the off-diagonal covariance structure:
(2.3)
H0a : σjk = σjk,0 for all (j, k) ∈ S1, where S1 = {(j, k) : 1 ≤ j 6= k ≤ p}.
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For X = (X1, . . . , Xp)
T , let W(X,S) := (XjXk − σjk)(j,k)∈S . In particular,

let T̂n = TS1 and

W(X,S1) =



X1X2 − σ12

. . .
X1Xp − σ1p

X2X1 − σ12

. . .
XpXp−1 − σp,p−1

(2.4)

be a p(p − 1)-dimensional vector. Let the random vector X be identically
distributed as Xi. Denote W = W(X, S1), Wi = W(Xi, S1) and W̄n =∑n

i=1Wi/n. Then the covariance matrix Γ = (γα,α′)α,α′∈S1 for W is p(p −
1)× p(p− 1) with entries

γ(j,k),(m,q) = E ((XjXk − σjk) (XmXq − σmq))
= E(XjXkXmXq)− σjkσmq
= cum(Xj , Xk, Xm, Xq) + σjmσkq + σjqσkm.(2.5)

The square of the Frobenius norm of Γ is

|Γ|2F =
∑

α,α′∈S1

γ2
αα′ := |E(WW T )|2F .

Suppose the following Lyapunov-type condition for Wi is satisfied: there
exists a constant K such that, for some δ > 0,

(KW
δ )2+δ := E

∣∣∣∣W T
1 W2

|Γ|F

∣∣∣∣2+δ

< K <∞.(2.6)

The basic idea of our test procedure is to bound the Kolmogorov distance be-
tween the distribution of nT̂n/|Γ|F and its Gaussian analog under condition
(2.6). Under the null hypothesis H0a, we can establish

sup
t∈R

∣∣∣∣∣∣P
(
nT̂n
|Γ|F

≤ t

)
− P

 1

(n− 1)|Γ|F

n∑
i 6=l
Y T
i Yl ≤ t

∣∣∣∣∣∣ −→ 0,

where Y1, ...,Yn are i.i.d. N(0,Γ), as the Gaussian analog of Wi in the sense
of having the same mean and the same covariance matrix. Then we shall
use a half-sampling technique to obtain an asymptotically unbiased and
consistent estimator of the cumulative distribution function of nT̂n, since
the covariance matrix Γ is unknown and the associated estimation issue can
be quite challenging. Rigorous analysis will be carried out afterwards.
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2.2. Asymptotic properties. To present an asymptotic theory of T̂n, we
impose the following conditions:

Assumption 2.1. Xij = µj +
∑N

l1=1 bj,l1ξil1 +
∑N

l1<l2
aj,l1l2ξil1ξil2 + · · ·+∑N

l1<l2<...<ld
aj,l1l2...ldξil1ξil2 ...ξild for all 1 ≤ j ≤ p where d is a fixed number,

{ξil}1≤i≤n,1≤l≤N are i.i.d. random variables with mean 0, variance 1, Eξ3
11 =

0 and Var(ξ2
11) = ν <∞.

Specifically, for Gaussian vector Xi, Assumption 2.1 always holds with
N = p and aj,l1l2 = 0, ..., aj,l1l2...ld = 0 for all 1 ≤ l1 < l2 < ... < ld ≤ N .
The requirement of ξi1, ..., ξiN being i.i.d. and Eξ3

11 = 0 is not essential and
is purely for the sake of simpler notion. Differently from Chen, Zhang and
Zhong (2010) and Qiu and Chen (2012), we do not assume N ≥ p.

Furthermore, many papers in testing high dimensional covariance matri-
ces assume linear process model, while we extend to nonlinear process mod-
el, i.e., Volterra process model. Linear process is considered in Xu, Zhang
and Wu (2014) and Li and Chen (2012). In the study of nonlinear system-
s, Volterra processes are of fundamental importance; see Schetzen (1980),
Rugh (1981), Casti (1985), Priestley (1988) and Bendat (1990), among oth-
ers. The Volterra process has been widely applied as nonlinear system mod-
eling technique with considerable success, since a wide range of nonlinear
process models admit Volterra process. At the technical level, Volterra pro-
cess involves recursive application of Rosenthal’s inequality.

Assumption 2.2. For some constant C > 0,

|Γ|2F ≥ C
∑

(j,k)∈S1

∑
(m,q)∈S1

(σ2
jmσ

2
kq + σjmσjqσkmσkq).(2.7)

We now discuss Assumption 2.2. LetQ :=
∑

(j,k)∈S1
∑

(m,q)∈S1 (σjmσkq + σjqσkm)2 .
Note that from (2.5),

|Γ|2F =Q+
∑

(j,k)∈S1

∑
(m,q)∈S1

(
cum(Xj , Xk, Xm, Xq)

2

+2cum(Xj , Xk, Xm, Xq)(σjmσkq + σjqσkm)) .

Assume that there exists a constant c < 1/4 such that

(2.8)
∑

(j,k)∈S1

∑
(m,q)∈S1

cum(Xj , Xk, Xm, Xq)
2 ≤ cQ.
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Similar conditions are commonly imposed for cumulant analysis; see, e.g.,
Kalouptsidis and Koukoulas (2005), Xiao and Wu (2013) and Cherif and
Fnaiech (2015). Then (2.8) implies Assumption 2.2 by the Cauchy-Schwarz
inequality

|Γ|2F ≥ 2(1− 2
√
c)

∑
(j,k)∈S1

∑
(m,q)∈S1

(σ2
jmσ

2
kq + σjmσjqσkmσkq).

Typical examples that satisfy (2.8) include Gaussian vectors whose 4th cu-
mulants are 0 and the linear process models, that is, under Assumption 2.1
with aj,l1l2...li = 0 for all 1 ≤ l1 < l2 < ... < li ≤ N, 2 ≤ i ≤ d, 1 ≤ j ≤ p; see
Lemma E.2 in the supplementary material for details.

The following theorem provides a Berry-Esseen type bound of the asymp-
totic approximation of T̂n by a linear combination of χ2

1 random variables.

Theorem 2.1. Suppose Assumptions 2.1 and 2.2 hold and ‖ξ11‖4+2δ <
∞ with 0 < δ ≤ 1. Then under the null hypothesis H0a (2.3), we have that
(2.9)

sup
t

∣∣∣∣∣∣P
(
nT̂n
|Γ|F

≤ t

)
− P

p(p−1)∑
d=1

λd
|Γ|F

(ηd − 1) ≤ t

∣∣∣∣∣∣ = O(n−δ/(10+4δ)),

where λ1 ≥ λ2 ≥ ... ≥ λp2−p ≥ 0 are eigenvalues of Γ and ηd, d ≥ 1, are
i.i.d. χ2

1.

Remark 2.1. We conjecture that better rate can be possibly derived by
applying the more sophisticated mathematical argument that involves solu-
tions to Stein’s equations. Solutions to Stein’s equation with normal dis-
tribution have a close form which is relatively easy to work with and it can
lead to sharp Berry-Esseen bound. Chatterjee (2008)’s new version of Stein’s
method can be applied to obtain sharp Berry-Esseen bounds of quadratic for-
m for normal approximation. However, it is difficult to work with Stein’s
equation with distribution being linear combinations of χ2

1 random variables.
A recent breakthrough of Stein’s method with distribution being linear com-
bination of χ2

1 random variables is considered in Arras et al. (2016). Due
to its extreme complexity, we are not able to apply it to our problem. The
optimal rate of L2 type Gaussian approximation is still open.

Note that
∑p(p−1)

d=1 λdηd and Y TY have the same distribution, with Y ∼
N(0,Γ). Under H0a, Theorem 2.1 implies that the asymptotic variance of

nT̂n is E(
∑p(p−1)

d=1 λd(ηd − 1))2 = 2|Γ|2F . If the null hypothesis H0a does not
hold, a similar argument as Theorem 2.1 implies the following corollary.
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Corollary 2.1. Suppose ‖ξ11‖4+2δ < ∞ with 0 < δ ≤ 1. Assume that∑p
j 6=k(σjk − σjk,0)2/|Γ|F = O(1). Under Assumptions 2.1 and 2.2, we have

that
(2.10)

sup
t

∣∣∣∣∣P
(
nT̂n
|Γ|F

≤ t

)
− P

(
(Y +

√
nµY )T (Y +

√
nµY )− tr(Γ)

|Γ|F
≤ t
)∣∣∣∣∣ = O(n−δ/(10+4δ)).

where Y ∼ N(0,Γ) and µY = (σ12−σ12,0, σ13−σ13,0, ..., σp,p−1−σp,p−1,0)T .
On the other hand, if

∑p
j 6=k(σjk − σjk,0)2/|Γ|F → ∞, under Assumptions

2.1 and 2.2, we have that nT̂n/|Γ|F →∞ in probability.

Remark 2.2. The idea of formulating the test statistics for off-diagonal
covariance structure can be used for testing H0 : σjk = σjk,0 for all |j−k| >
κ, e.g., the banding structure. With little modification of T̂n, we can con-
struct a test statistic on the super-diagonals |j − k| > κ. Similar asymptotic
properties in Theorem 2.1 and Corollary 2.1 can be obtained.

The asymptotic approximation in Theorem 2.1 is attained without any
restriction on p. In the low dimensional case with p = O(1), which may
be viewed as having finite dimension, the Berry-Esseen style theorem as
conveyed in Theorem 2.1 and Corollary 2.1 still hold.

By Theorem 2.1, in general, the approximating distribution of T̂n is a
linear combination of χ2

1. The following corollary concerns a central limit
theorem for T̂n.

Corollary 2.2. Under conditions of Theorem 2.1, the central limit

theorem nT̂n/|Γ|F
d−→ N(0, 2) holds if and only if

ρΓ :=
tr(Γ4)

tr2(Γ2)
→ 0, as p→∞.(2.11)

Assume
∑

(j,k)∈S1
∑

(m,q)∈S1(σ2
jmσ

2
kq +σjmσjqσkmσkq) ≥ Ktr2(Σ2) for some

constant K > 0. If {Xi}ni=1 follows the linear process model, that is, under
Assumption 2.1 with aj,l1l2...li = 0 for all 1 ≤ l1 < l2 < ... < li ≤ N, 2 ≤ i ≤
d, 1 ≤ j ≤ p, then, (2.11) is equivalent to

ρΣ → 0, as p→∞.(2.12)

In other words, condition (2.12) for linear process models is the necessary
and sufficient one to achieve the central limit theorem. Condition (2.12) is
widely used in the literature of high dimensional hypothesis testing prob-
lems; see e.g., Chen, Zhang and Zhong (2010), Li and Chen (2012). This
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result is consistent with Proposition 3 in Cai and Ma (2013) which deals
with tests for high dimensional covariance matrices for Gaussian vectors.
They developed the Berry-Esseen bound (1/n + ρΣ)1/5 for a similar test
statistic which is asymptotically Gaussian under (2.12). Condition (2.12) is
violated, for instance the rational quadratic covariance structure in Example
2.1 below or the simple linear factor model Xij = Fi + ξij where {Fi} and
{ξij} are i.i.d. mean 0 and variance 1, tr(Σ4) � tr2(Σ2).

Example 2.1. Consider the rational quadratic covariance structure Σ0 =
{(σjk,0(θ))p×p : σjk,0(θ) = (1 + θ−1

1 θ−2
2 |j − k|2)−θ1/2 and 0 < θ1 < 1/2, θ2 >

0}. It can be shown that tr(Σ4) � p4−4θ1 and tr(Σ2) � p2−2θ1, leading to
ρΣ 6→ 0, as p → ∞. Then the classical central limit theorem in Corollary
2.2 does not apply, while Theorem 2.1 still holds with a non-Gaussian ap-
proximating distribution.

2.3. Estimating the distribution of nT̂n. In general, by Theorem 2.1, the
asymptotic distribution of nT̂n can be used for testing with estimated criti-

cal values via estimation of {λd}
p(p−1)
d=1 . It is also called a plug-in resampling

procedure based on the sample version of Γ (see Xu, Zhang and Wu (2014)).
However, estimation of the eigenvalues of matrix Γ is highly nontrivial, s-
ince by (2.5) Γ is a very high p(p − 1) × p(p − 1) dimensional matrix. To
formulate a computational feasible test procedure, we use a half-sampling
approach (also balanced Rademacher weighted differencing scheme) to avoid
such estimation problems, and obtain an asymptotically unbiased and con-
sistent estimator of the cumulative distribution function of nT̂n.

Assume that n is even. Let B ⊂ {1, 2, ..., n}, Bc = {1, ..., n}\B, and |B| =
|Bc| = m = n/2. Define respectively:

JB(S1,Σ0) =
∑

(j,k)∈S1

Rjk(B, σjk,0),(2.13)

CB,Bc(S1,Σ0) =
∑

(j,k)∈S1

Njk(B,B
c, σjk,0),(2.14)

where recall the notation
∑∗ means summation over mutually different sub-
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scripts shown, P km := m(m− 1) · · · (m− k), and

Njk(B,B
c, σjk,0) =

 1

m

∑
i1∈B

Xi1jXi1k −
1

P 1
m

∗∑
i1,i2∈B

Xi1jXi2k − σjk,0


(2.15)

·

 1

n−m
∑
i3∈Bc

Xi3jXi3k −
1

P 1
n−m

∗∑
i3,i4∈Bc

Xi3jXi4k − σjk,0

 ,

Rj,k(B, σjk,0) =
1

P 1
m

∗∑
i1,i2∈B

Xi1jXi1kXi2jXi2k −
2

P 2
m

∗∑
i1,i2,i3∈B

Xi1jXi2jXi2kXi3k

(2.16)

+
1

P 3
m

∗∑
i1,i2,i3,i4∈B

Xi1jXi2jXi3kXi4k + σ2
jk,0

− 2

m
σjk,0

∑
i1∈B

Xi1jXi1k +
2

P 1
m

σjk,0

∗∑
i1,i2∈B

Xi1jXi2k.

We consider the balanced Rademacher weighted differencing scheme (half-
sampling approach). The half sampling estimator is defined as

(2.17) F̃ (t) =
1(
n
m

) ∑
B∈B

1m(1−m/n)(JB(S1,Σ0)+JBc (S1,Σ0)−2CB,Bc (S1,Σ0))≤t,

where B contains all the subsets of size m of {1, 2, ..., n}. Because
(
n
m

)
can be

too large, F̃ (t) may be difficult to compute. Instead, a stochastic approxima-
tion may be employed. Let B1, ..., BL be i.i.d. uniformly sampled from the
class B := {B : B ⊂ {1, ..., n}, |B| = m}. Assuming {Xi} and the sampling
process {Bl} are independent. The balanced Rademacher weighted differ-
ences is defined by m(1−m/n)(JBl(S1,Σ0)+JBcl (S1,Σ0)−2CBl,Bcl (S1,Σ0)).

Following Politis, Romano and Wolf (1999), F̃ (t) can be approximated by

(2.18) F̂L(t) =
1

L

L∑
l=1

1m(1−m/n)(JBl (S1,Σ0)+JBc
l
(S1,Σ0)−2CBl,B

c
l
(S1,Σ0))≤t.

By the Dvoretzky-Kiefer-Wolfowitz-Massart inequality (cf. Massart (1990)),

P∗
(

sup
t
|F̂L(t)− F̃ (t)| ≥ u

)
≤ 2e−2Lu2 , u ≥ 0,(2.19)
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where P∗(·) = P(·|X1, ...,Xn) is the conditional probability given the origi-
nal data {X1, ...,Xn}. Hence, the distribution function of F (t) := P(nT̂n ≤
t) can be estimated by F̃ (t) (cf. Theorem 2.2), which is well approximated
by F̂L(t) by choosing L ≥ n.

Politis, Romano and Wolf (1999) assume that m/n → 0, whereas, moti-
vated by numerical performance (see Example 2.2 below), we build a new
half sampling procedure under the case m = n/2. In contrast, Xu, Zhang
and Wu (2014) considered a sub-sampling procedure with m = o(n). The
convergence rate they developed for subsampling is much worse than our
Theorem 2.2. In practice, we directly use the stochastic approximation of
the half sampling estimator, F̂L(t), instead of the original half sampling esti-
mator F̃ (t). When the sample size is too small, the total number of possible
subsamples can be small, then the method is less reliable. In practice, we
recommend the sample size n ≥ 20 and resampling replications L ≥ 1000.

Our half sampling procedure is motivated by the Hadamard matrices. For
ease of presentation, consider the mean test problem. Assume that Y1, ...,Yn
are i.i.d. N(µ,Σ). Let H be an n × n Hadamard matrix where its first
row consists all 1’s, all its entries take values 1 or −1, and its rows are
mutually orthogonal, so that HHT = nIn. Let Zl = n−1/2

∑n
i=1HliYi for

l = 1, 2, ..., n. Then Z2, Z3, ..., Zn are i.i.d. N(0,Σ) and the empirical
cumulative distribution function

F̂n(t) =
1

n− 1

n∑
l=2

1|Zl|22≤t

converges uniformly to F (t) = P(n|Ȳ − µ|22 ≤ t). We can reject the null
hypothesis µ = 0 at level α ∈ (0, 1) if n|Ȳ |22 > t̂1−α, where t̂1−α is the
(1 − α)th sample quantile of F̂n(t). As an important feature of the latter
method, one does not need to estimate the covariance matrix Σ. However,
it is highly nontrivial to construct Hadamard matrices; see Hedayat et al.
(1978) and Yarlagadda and Hershey (2012). To circumvent the construction
problem of Hadamard matrices, we shall obtain asymptotically independent
realizations by using balanced Rademacher weighted differencing scheme.
See Wu, Lou and Han (2018) for more details.

The example below numerically illustrates the benefits of the half-sampling
approach over the usual sub-sampling procedure with m = o(n). Our half
sampling approach goes far beyond the theoretical results about sub-sampling
approach in Xu, Zhang and Wu (2014). The proofs of the validity of half-
sampling approach are highly nontrivial and require a more involved Gaus-
sian approximation result than theirs.
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Fig 1. Power curve of the test given in Qiu and Chen (2012) (abbr. QC), the sub-sampling
procedures with resampling size m = 14, 20 and the half sampling procedure with m = 30
at size = 0.05. The resampling sizes are 2000.

0.00 0.02 0.04 0.06 0.08 0.10

ρ

po
w

er

Power curve for size=0.01

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

QC
m=14
m=20
m=30

0.10 0.15 0.20 0.25

ρ

po
w

er

Power curve for size=0.01

0.
01

0.
20

0.
40

0.
60

0.
80

1.
00

QC
m=14
m=20
m=30

Fig 2. Power curve of the test given in Qiu and Chen (2012) (abbr. QC), the sub-sampling
procedures with resampling size m = 14, 20 and the half sampling procedure with m = 30
at size = 0.01. The resampling sizes are 5000.
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Example 2.2. Consider the following model:

Xij = Zij + ρζi, 1 ≤ i ≤ n, 1 ≤ j ≤ p,

where Zij’s and ζi’s are i.i.d N(0, 1), and ρ is a parameter. To obtain the
power curve, the data set is simulated by setting ρ from 0 (under the null) to
0.25. We set p = 120 and n = 60. Figures 1 and 2 display the power curve
of the test given in Qiu and Chen (2012) (abbr. QC), the sub-sampling
procedures with resampling size m = 14, 20 and the half sampling procedure
with m = 30. The empirical size and power of the tests are estimated from
10000 realizations. The result shows that sub-sampling with resampling size
m = 14 leads to a smaller empirical size than the nominal level, while all the
other tests have correct sizes. It can be noted that the half sampling procedure
is the best one in both size accuracy and power. In addition, the sub-sampling
with m = 20 also improves the power over the sub-sampling with m = 14
and the QC test.

Let y∗α = inf{y : F̃ (y) ≥ α} be the α-quantile of half-sampling estimator
F̂ (t). It can be approximated by y∗L,α = inf{y : F̂L(y) ≥ α}. Theorem 2.2

shows convergence property of the half-sampling estimator F̃ (t):

Theorem 2.2. Let F (t) = P(nT̂n ≤ t). Suppose Assumptions 2.1 and
2.2 hold, and ‖ξ11‖4+2δ < ∞ where 0 < δ ≤ 1. Let m = dn/2e, then under
the null hypothesis H0a in (2.3),

sup
t

E|F̃ (t)− F (t)|2 = O(n−δ/(10+4δ)).(2.20)

Based on Theorem 2.2, at a given significance level 0 < α < 1, we propose
the test Φa,α = 1(nT̂n ≥ y∗1−α). In practice, we use y∗L,1−α instead of y∗1−α.
The null hypothesis H0a is rejected whenever Φa,α = 1. Power analysis is
discussed in the supplementary materials. In multiple testing problems that
are common in genomics, researchers use either normal approximation based
method, or the normal quantile transformation of mixture of χ2

1 distribution;
see e.g. Xia, Cai and Cai (2018).

3. Testing Parametric Forms of Covariance Functions. In this
section, we aim to test:

(3.1) H0a : σjk = σjk,0(θ) for all (j, k) ∈ S1, S1 = {(j, k) : 1 ≤ j 6= k ≤ p},
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where the unknown parameter θ = (θ1, ..., θd)
T ⊂ Rd and d is finite. We

estimate θ by

θ̂ = arg min
θ

p∑
j 6=k

(σ̂jk − σjk,0(θ))2.(3.2)

Assume that θ̂ − θ = OP(αn,p), where αn,p is the rate of convergence. For
example, it can be verified that αn,p = (

√
np)−1 for the sphericity structure

Σ0(θ) = θIp, and αn,p = (
√
n)−1 for the compound symmetry structure

Σ0(θ) = Ip + θ(11T − Ip).
We first introduce some notation. Let θj be the j-th (j = 1, ..., d) compo-

nent of the d-dimensional vector θ. Let V = (vm,q)1≤m,q≤d with

vmq =

p∑
j 6=k

(
∂σjk,0(θ)

∂θm
·
∂σjk,0(θ)

∂θq
).

In addition, let Ψ = (Ψ1, ...,Ψd) and

Ψm = (
∂σ12,0(θ)

∂θm
,
∂σ13,0(θ)

∂θm
, ...,

∂σp,p−1,0(θ)

∂θm
)T

for 1 ≤ m ≤ d. Moreover, define

Υ = ΨV −1Ψ′.

For the process Wi =W(Xi,S1) as W(Xi,S1) defined in (2.4), let

κ2+%
% := E

∣∣∣∣W T
1 ΥW1 − tr(ΥΓ)

|Γ−ΥΓ|F

∣∣∣∣2+%

.(3.3)

To facilitate the theoretical analysis, the following technical conditions are
considered (see Zhong et al. (2017)).

Assumption 3.1. Assume that θ̃ is in a small neighborhood of θ. (i).
For any 1 ≤ m, q ≤ d,

p∑
j 6=k

∂2σjk,0(θ̃)

∂θm∂θq
(σjk,0(θ)− σjk) = o


p∑
j 6=k

∂σjk,0(θ)

∂θm

∂σjk,0(θ)

∂θq

 ,

p∑
j 6=k

(
∂2σjk,0(θ)

∂θm∂θq
(σjk,0(θ)− σjk)

)2

= O


p∑
j 6=k

(
∂σjk,0(θ)

∂θm

∂σjk,0(θ)

∂θq

)2
 .
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(ii). For any 1 ≤ m, q, s ≤ d,

p∑
j 6=k

(
∂3σjk,0(θ̃)

∂θm∂θq∂θs
σjk

)u
= O


p∑
j 6=k

(
∂2σjk,0(θ)

∂θm∂θq
σjk

)u for u=1,2,

p∑
j 6=k

(
∂2σjk,0(θ)

∂θm∂θq
σjk,0(θ)

)2

= O


p∑
j 6=k

(
∂σjk,0(θ)

∂θm

∂σjk,0(θ)

∂θq

)2
 .

Similar to T̂n = TS1 in (2.1), we define T̂n(θ̂) with σjk,0 in (2.2) replaced

by σjk,0(θ̂). The asymptotic behavior with estimated parameters is more
complicated. The estimated parameters can play a nontrivial role, leading
to dichotomous limiting behaviors, c.f. Theorem 3.1. We supplemented the
Gaussian approximation results in Xu, Zhang and Wu (2014) with another
type of approximating distribution when the bias term is the leading term in
the test statistic. The following theorem presents the asymptotic properties
of T̂n(θ̂).

Theorem 3.1. Suppose Assumptions 2.1, 2.2 and 3.1 hold and ‖ξ11‖4+2δ <
∞, κ% < ∞ with 0 < δ ≤ 1, % ≥ 0. (i) If κ0/

√
n → 0, then under the null

hypothesis H0a in (3.1),
(3.4)

sup
t

∣∣∣∣∣∣P
(

nT̂n(θ̂)

|Γ−ΥΓ|F
≤ t

)
− P

 1

|Γ−ΥΓ|F
(

p(p−1)∑
d=1

λdηd − tr(Γ)) ≤ t

∣∣∣∣∣∣→ 0.

where λd are eigenvalues of (I −Υ)1/2Γ(I −Υ)1/2 and ηd are i.i.d. χ2
1.

(ii) If
√
n/κ0 → 0 and the Lindeberg condition holds, i.e.,

(3.5) E

(∣∣∣∣W T
1 ΥW1 − tr(ΥΓ)

κ0|Γ−ΥΓ|F

∣∣∣∣2 1|W T
1 ΥW1−tr(ΥΓ)|≥

√
nεκ0|Γ−ΥΓ|F

)
→ 0

for any ε > 0, then under the null hypothesis H0a (3.1),

sup
t

∣∣∣∣∣P
(√

n(nT̂n(θ̂) + tr(ΥΓ))

κ0|Γ−ΥΓ|F
≤ t

)
− Φ (t)

∣∣∣∣∣→ 0,(3.6)

where Φ is the standard Gaussian cdf.

Remark 3.1. When κ0/
√
n→ 0, Theorem 3.1(i) reveals that the asymp-

totic mean of nT̂n(θ̂)/|Γ − ΥΓ|F is (tr((I − Υ)Γ) − tr(Γ))/|Γ − ΥΓ|F =
−tr(ΥΓ)/|Γ−ΥΓ|F , which may not converge to 0 as n, p→∞.
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Remark 3.2. As pointed out in Chen and Qin (2010), although the term∑n
i=1X

′
iXi in |X̄|22 is not useful in testing of the mean, it may impose extra

restriction on p and n. Likewise, our κ0 controls the effect of
∑

i=1W
T
i ΥWi,

which is a bias term induced by the estimation of the unknown parameters.
In practice, κ0/

√
n → 0 means that the estimation of θ does not affect

the asymptotic behavior of the test statistic. In contrast, if
√
n/κ0 → 0,

the estimation of θ incurs leading order effects of the test statistic. Then
under proper normalization, we can still achieve asymptotic normality, i.e.,
Theorem 3.1(ii).

The test statistic nT̂n(θ̂) can have two different asymptotic distributions,
depending on the magnitudes of κ0 and

√
n. Note that the asymptotic order

of κ0 is related to the convergence rate of θ̂ to θ. We next present several
examples to illustrate the asymptotic orders of κ0 and the corresponding
limiting distributions. For notational simplicity, we assume Xi ∼ N(0,Σ0)
in the examples.

Example 3.1. Consider the compound symmetry covariance structure
Σ0 = Ip + θ(11T − Ip) with θ ∈ (0, 1) and let Xi ∼ N(0,Σ0). It can be
shown that Υ = (p(p − 1))−11p(p−1)1

T
p(p−1), tr(ΥΓ) = 2θ2(p − 2)(p − 3) +

4(θ2 + θ)(p − 2) + 2(θ2 + 1) and tr(Γ − ΥΓ)2 � 4(θ − θ2)2p(p − 1)(p − 2).
Then basic calculation shows that κ0 �

√
p. Consequently, if p/n → 0,

(n(n − 1))−1
∑n

i 6=lW
T
i Wl is the leader term and we shall apply Theorem

3.1(i); in contrast, if n/p→ 0, n−2
∑n

i,lW
T
i ΥWl is the leader term and the

Lindeberg condition holds, then we shall apply Theorem 3.1(ii).

Example 3.2. Consider the exponential covariance class Σ0 = {(σjk,0(θ))p×p :
σjk,0(θ) = θ1 exp (−|j − k|/θ2) and θ1, θ2 > 0} and let Xi ∼ N(0,Σ0). It can
be shown that tr(ΥΓ) � 1, tr(ΥΓ)2 � 1 and tr(Γ−ΥΓ)2 � 1. Then κ0 � 1.
Thus, κ0/

√
n→ 0, (n(n−1))−1

∑n
i 6=lW

T
i Wl is the leader term and we shall

apply Theorem 3.1(i).

Example 3.3. Consider the rational quadratic covariance structure Σ0 =
{(σjk,0(θ))p×p : σjk,0(θ) = (1 + θ−1

1 θ−2
2 |j − k|2)−θ1/2 and θ1, θ2 > 0} and let

Xi ∼ N(0,Σ0). If 0 < θ1 < 1/2, by elementary calculations, tr(ΥΓ) �
p2−2θ1, tr(ΥΓ)2 � p4−4θ1, tr(Γ2) � p4−4θ1 and tr(Γ − ΥΓ)2 � p4−4θ1. Then
κ0 � 1. On the other hand, if θ1 > 1/2, then tr(ΥΓ) � p3−4θ1 log2(p) + 1,
tr(ΥΓ)2 � p6−8θ1 log4(p) + 1, tr(Γ2) � p2 and tr(Γ − ΥΓ)2 � p2. This
leads to κ0 � p2−4θ1 log2(p) + 1/p. Thus, on both cases, κ0/

√
n→ 0, (n(n−

1))−1
∑n

i 6=lW
T
i Wl is the leader term and we shall apply Theorem 3.1(i).
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Similar to Section 2.3, we can formulate a half sampling procedure. Let
θ̂B (resp. θ̂Bc) be the least squares estimator of equation (3.2) via {Xi}i∈B
(resp. {Xi}i∈Bc). Define JB(S1, θ̂) and CB,Bc(S1, θ̂) with σjk,0 in (2.13) and

(2.14) replaced by σjk,0(θ̂B) and σjk,0(θ̂Bc). Similarly as (2.17) and (2.18),
we write the half sampling estimator and its stochastic approximation of the
distribution function of nT̂n(θ̂) as F̃θ̂(t) and F̂L,θ̂(t), respectively. A more
detailed version is provided in the appendix.

Thus, we have the following asymptotic property for the half-sampling
estimator F̃θ̂(t):

Theorem 3.2. Write Fθ(t) := P(nT̂n(θ) ≤ t). Suppose Assumptions
2.1, 2.2 and 3.1 hold, and ‖ξ11‖4+2δ < ∞ where 0 < δ ≤ 1. If

√
n/κ0 → 0,

then assume the Lindeberg condition (3.5) holds. If m = dn/2e → ∞, then
under the null hypothesis H0a in (3.1),

sup
t
|F̃θ̂(t)− Fθ̂(t)| P→ 0.(3.7)

Based on Theorem 3.2, at a given significance level 0 < α < 1, we propose
the test Φa,α,θ̂ = 1(nT̂n(θ̂) ≥ y∗1−α), where y∗1−α is the (1 − α)th quantile

of F̃θ̂(t). In practice, we use y∗L,1−α := inf{y : F̂L,θ̂(y) ≥ 1 − α} instead of
y∗1−α. The null hypothesis H0a is rejected whenever Φa,α,θ̂ = 1. Note that
our half sampling procedure is valid on both cases in Theorems 3.1. We shall
evaluate the numeric performance of the new test method in Section 5. It
is also worth noting that our test procedure Φa,α,θ̂ can be applied to test
general parametric structures, and do not need to estimate the bias induced
by estimation of unknown parameters.

4. Testing a Given Substructure of the Precision Matrix. In this
section, we consider testing

H0c : ωjk = 0 for all (j, k) ∈ S,

where S is the index set of the precision matrix Ω of interest. Under the
Gaussian graphical model framework, a submatrix of the precision matrix
characterizes the network of two groups. See De la Fuente (2010), Hudson,
Reverter and Dalrymple (2009), Ideker and Krogan (2012), Jia et al. (2011),
Li, Agarwal and Rajagopalan (2008), among others. In general, testing sub-
structure of Σ is not directly useful for testing substructure of Ω. So it is
essential to work on the precision matrix directly, not the covariance matrix.

A natural approach to test H0c is to first construct estimators of ωjk, and
then base the test on the sum of squares of the entries in the index set S.
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In the high-dimensional setting, there is no sample precision matrix that
one can use to approximate Ω. In this section, we assume p = o(n), then
we can use the inverse of sample covariance matrix as an estimate of the
precision matrix. That is, Ω̂ = Σ̂−1 = (ω̂jk)j,k≤p. We propose the following
test statistic for testing the null hypothesis H0c,

(4.1) Ĝn =
∑

(j,k)∈S

ω̂2
jk.

The method in this paper does not take into account any structural informa-
tion, which can be useful in analyzing high-dimensional data in situations
that such information is not available.

Before studying the null distribution of Ĝn, we first introduce the follow-
ing regularity conditions.

Assumption 4.1 (Sub-Gaussian). Suppose ξil, 1 ≤ i ≤ n, 1 ≤ l ≤ N,
are i.i.d mean 0 sub-Gaussian random variables with

E exp
(
tξ2
il

)
≤ K <∞,

for some constant K > 0 and t > 0.

Assumption 4.2. Assume for some constant K0 > 0, K−1
0 ≤ λmin(Ω) ≤

λmax(Ω) ≤ K0, where λmax(Ω) and λmin(Ω) denote the largest and the small-
est eigenvalues of Ω, respectively.

Assumption 4.2 on the eigenvalues is a common assumption in the high
dimensional setting, for instance, Xia, Cai and Cai (2015) and Xia, Cai and
Cai (2018). Note that this assumption is equivalent to K−1

0 ≤ λmin(Σ) ≤
λmax(Σ) ≤ K0.

We now introduce some notation. Let Wi = W(Xi, S0), where S0 =
{(j, k) : 1 ≤ j, k ≤ p}. Then denote the covariance matrix for Wi as Γ =
(γα,α′)α,α′∈S0 . Let Λ = (Λ(m1,q1),(m2,q2))1≤m1,m2,q1,q2≤p with

Λ(m1,q1),(m2,q2) =
∑
j,k∈S

ωjm1ωjm2ωkq1ωkq2 ,

where S is the index set of the precision matrix Ω of interest. Define

τ2+%
% := E

∣∣∣∣W T
1 ΛW1 − tr(ΛΓ)

|ΛΓ|F

∣∣∣∣2+%

.(4.2)

The following theorem states the asymptotic properties of Ĝn. Let |S| be
the cardinality of S; let λ1 ≥ . . . ≥ λp2 ≥ 0 be eigenvalues of Λ1/2ΓΛ1/2 and

fk = (
∑p2

d=1 λ
k
d)

1/k, k > 0. Then tr(ΛΓ) = f1 and |ΛΓ|F = f2.
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Theorem 4.1. Consider the linear process model Xij =
∑N

l=1 bj,lξil,
1 ≤ j ≤ p, where ξil are i.i.d. and satisfy Assumption 4.1. Suppose that
Assumption 4.2 holds and τ% < ∞ with 0 < δ ≤ 1, % ≥ 0. (i) If τ0/

√
n → 0

and p2|S|f1/(nf
2
2 )→ 0, then under the null hypothesis H0c,

(4.3) sup
t

∣∣∣∣∣∣P
(
nĜn − f1

f2
≤ t

)
− P

p(p−1)∑
d=1

λd
f2

(ηd − 1) ≤ t

∣∣∣∣∣∣→ 0.

where ηd are i.i.d. χ2
1. (ii) If

√
n/τ0 → 0, p2|S|f1/(τ

2
0 f

2
2 ) → 0, and the

Lindeberg condition holds, i.e., for any ε > 0,

E

(∣∣∣∣W T
1 ΛW1 − f1

τ0f2

∣∣∣∣2 1|W1ΛW T
1 −f1|≥

√
nετ0f2

)
→ 0,

then under the null H0c, we have the CLT

(4.4)

√
n(nĜn − f1)

τ0f2
⇒ N(0, 1).

Remark 4.1. Assume Xi ∼ N(0,Σ). Then, under Assumption 4.2, by

elementary calculations, we have that E
∣∣W T

1 ΛW1

∣∣2 � p2|S|2, f1 � p|S| and
f2

2 � p2|S|2. This leads to τ0 = O(1). Thus, we shall apply Theorem 4.1(i).
Meanwhile, the allowed dimension p can be as large as p = o(n).

The estimation of ΛΓ is technically challenging, since correlations among
the estimates of the entries of ωjk for (j, k) ∈ S not only depend on the
entries within the submatrix, but also heavily depend on the entries outside
of it. To incorporate this dependency structure, we use the half sampling ap-
proach in previous sections. Let B1, ..., BL be i.i.d. uniformly sampled from
the class B := {B : B ⊂ {1, ..., n}, |B| = m}, where m = dn/2e. Denote
the empirical precision matrix estimated by {Xi}i∈B (resp. {Xi}i∈Bc) as
Ω(B) := (ωjk,B) (resp. Ω(Bc) := (ωjk,Bc)). Then we estimate the distribu-

tion function of FG(t) := P(nĜn ≤ t) by

F̃G(t) =
1(
n
m

) ∑
B∈B

1m(1−m/n)(
∑

(j,k)∈S(ωjk,B−ωjk,Bc )2)≤t.(4.5)

Similarly as (2.18), define its stochastic approximation F̂L,G(t). Our half-
sampling procedure is as follows.

(1) Generate a subset B of size m of {1, ..., n}. Then compute the empirical
precision matrix estimation Ω(B) and Ω(Bc), and obtain the half-
sampling test statistic m(1−m/n)

∑
(j,k)∈S(ωjk,B − ωjk,Bc)2.
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(2) Repeat the above step independently L times (L > n) and collect all
the corresponding half-sampling test statistics.

(3) Construct half-sampling estimator F̂L,G(t), and calculate the (1− α)-

quantile of F̂L,G(t): y∗L,1−α = inf{y : F̂L,G(y) ≥ 1− α}.

The test for H0c is then defined as Φc,α = 1(nĜn ≥ y∗L,1−α). We shall
reject the null hypothesis H0c at level α, whenever Φc,α = 1. Besides, p-
value can be estimated as F̂L,G(nĜn).

5. Simulation Studies. In this section, we shall evaluate the numerical
performance of the proposed methods based on the tests Φa,α, Φa,α,θ and
Φb,α for two subvectors (c.f. Appendix A). All these testing procedures use
the half sampling approach. In practice, we recommend the sample size n ≥
20 and resampling replications should be at least 1000. As other resampling
methods, the computational cost of our procedure is high. The test Φa,α

is compared with several other tests, including the test given in Qiu and
Chen (2012) which is based on the sum-of-squares type statistics and the
test proposed in Chernozhukov, Chetverikov and Kato (2013) which uses
Gaussian Multiplier Bootstrap, and is based on the maximum deviation
type statistics. These tests are denoted respectively by Qiu-Chen and CCK
in the rest of this section. The test Φa,α,θ is compared with a sum-of-squares
type statistic given in Zhong et al. (2017), which is denoted as ZLST. For
the test Φb,α, it is compared with CCK only. More simulation results are
given in the supplemental material.

We first consider the test for H0a : σjk = σjk,0 for all (j, k) ∈ S1. To
compare with the tests for the banded Σ proposed by Qiu and Chen (2012),
we consider the case σjk,0 = 0 for all (j, k) ∈ S1. The following model under
the null, σjk = 0 for all (j, k) ∈ S1, is used to study the size of the tests:

Xij =
√

∆jZij , i = 1, ..., n, j = 1, ..., p,(5.1)

where ∆j =
√
p · Unif(0.5, 2.5) for j = 1, 2, otherwise, ∆j = Unif(0.5, 2.5)

for j = 3, ..., p.
To evaluate the power, we generate multivariate random vector Xi =

(Xi1, · · · , Xip) independently according to the moving average model,

Xij =
√

∆j(Zi,j + 3Zi,j+1), i = 1, ..., n, j = 1, ..., p,(5.2)

where three distributions are assigned to the i.i.d. Zij : (i) standard normal;
(ii) centralized Gamma(4,1); and (iii) the student t5. The last two cases are
designed to assess the performance under non-normality and heavy tails.
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Table 1
Empirical sizes for H0a : σjk = σjk,0 for all j 6= k at 5% significance, based on 2000

replications with normal, gamma and student-t innovations in Model (5.1)

p Proposed Test Φa,α Qiu-Chen CCK
n 20 50 100 20 50 100 20 50 100

Normal
32 0.050 0.055 0.044 0.027 0.025 0.024 0.026 0.020 0.022
64 0.048 0.053 0.057 0.026 0.025 0.028 0.023 0.024 0.029
128 0.061 0.052 0.049 0.027 0.026 0.017 0.019 0.025 0.016
256 0.053 0.054 0.053 0.019 0.024 0.034 0.020 0.020 0.025
512 0.061 0.052 0.052 0.028 0.026 0.019 0.029 0.020 0.018
1024 0.055 0.053 0.048 0.017 0.030 0.022 0.020 0.032 0.024
Gamma
32 0.042 0.048 0.049 0.025 0.034 0.028 0.023 0.024 0.017
64 0.048 0.055 0.048 0.020 0.023 0.017 0.018 0.022 0.021
128 0.054 0.053 0.056 0.021 0.028 0.018 0.020 0.015 0.022
256 0.062 0.051 0.054 0.035 0.025 0.023 0.016 0.019 0.019
512 0.051 0.051 0.049 0.025 0.026 0.022 0.014 0.027 0.018
1024 0.056 0.054 0.050 0.022 0.022 0.020 0.018 0.020 0.017
Student t
32 0.041 0.049 0.050 0.023 0.024 0.022 0.014 0.029 0.018
64 0.051 0.048 0.050 0.020 0.020 0.021 0.019 0.022 0.022
128 0.053 0.047 0.052 0.017 0.018 0.030 0.014 0.018 0.024
256 0.054 0.053 0.062 0.032 0.025 0.024 0.025 0.022 0.023
512 0.050 0.054 0.044 0.012 0.022 0.019 0.014 0.027 0.028
1024 0.043 0.057 0.054 0.025 0.016 0.024 0.028 0.016 0.017

We choose a set of data dimensions p = 32, 64, 128, 256, 512, 1024, while
the sample size is n = 20, 50, 100, respectively. The nominal significance level
for all the tests is set at α = 0.05. The empirical size and power of the tests,
reported in Tables 1 and 2, are estimated from 2000 replications.

It can be seen from Table 1 that the estimated sizes of our proposed
test Φa,α are close to the nominal level 0.05 in all the cases. And the size
is not sensitive to the dimensionality indicated by its robust performance.
This reflects the fact that the null distribution of the test statistic is well
approximated by our half-sampling approach. The empirical sizes using Qiu
and Chen (2012) (Qiu-Chen) or Chernozhukov, Chetverikov and Kato (2013)
(CCK) encounter serious size distortion. The actual sizes are around 0.02 for
both tests. This phenomenon is expected as the Qiu-Chen test is constructed
based on the asymptotic normality (cf. (2.12)), which is no longer valid for
model (5.1) due to the fact that tr(Σ4) � tr2(Σ2) � p2 and ρΣ 6→ 0, and the
CCK based test works for sparsity scenario.

The power results in Table 2 show that the proposed test has a much
higher power than the other tests in all settings. The results show clearly
that the powers of all these test improves with the sample size increases.
However, the power of the Qiu-Chen test deteriorates as the dimension p
grows. Overall, the new test significantly outperforms the other two tests.
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Table 2
Empirical powers for H0a : σjk = σjk,0 for all j 6= k at 5% significance, based on 2000

replications with normal, gamma and student-t innovations in Model (5.2)

p Proposed Test Φa,α Qiu-Chen CCK
n 20 50 100 20 50 100 20 50 100

Normal
32 0.255 0.590 0.903 0.176 0.507 0.863 0.192 0.539 0.852
64 0.264 0.580 0.890 0.169 0.474 0.837 0.190 0.523 0.855
128 0.266 0.608 0.924 0.164 0.462 0.820 0.194 0.527 0.879
256 0.260 0.596 0.910 0.168 0.444 0.793 0.197 0.525 0.843
512 0.253 0.581 0.892 0.173 0.467 0.786 0.173 0.552 0.858
1024 0.275 0.619 0.912 0.177 0.471 0.817 0.196 0.515 0.840
Gamma
32 0.250 0.587 0.907 0.176 0.486 0.824 0.182 0.501 0.834
64 0.243 0.579 0.929 0.171 0.469 0.803 0.178 0.504 0.857
128 0.252 0.597 0.896 0.164 0.472 0.793 0.186 0.521 0.834
256 0.263 0.588 0.919 0.168 0.454 0.800 0.192 0.513 0.856
512 0.260 0.593 0.906 0.150 0.446 0.826 0.191 0.488 0.841
1024 0.248 0.602 0.910 0.139 0.481 0.814 0.178 0.498 0.846
Student t
32 0.263 0.587 0.890 0.173 0.515 0.843 0.161 0.478 0.795
64 0.240 0.573 0.892 0.168 0.480 0.835 0.161 0.481 0.806
128 0.264 0.599 0.913 0.173 0.469 0.791 0.169 0.484 0.783
256 0.248 0.590 0.908 0.167 0.470 0.777 0.170 0.483 0.799
512 0.253 0.584 0.887 0.176 0.455 0.791 0.169 0.479 0.781
1024 0.267 0.606 0.891 0.180 0.466 0.786 0.162 0.483 0.778

Next, we conduct two simulation studies (Example 3.1 and Example 3.3)
to evaluate the finite sample performance of the test Φa,α,θ for H0a : σjk =
σjk,0(θ) for all (j, k) ∈ S1. Data dimension p is chosen to be 60, 120, 240,
480, 720, 960, and the sample size is n = 60, 120. The empirical size and
power of the tests at the nominal level 0.05 and 0.01 are reported in Tables
3, 4, 5 and 6, based on 2000 replications and 10000 replications, respectively.
We also compare our test statistic Φa,α,θ with the ZLST test proposed by
Zhong et al. (2017) for Gaussian data.

The null hypothesis for testing compound symmetry covariance structure
is

H0a : Σ0 = Ip + θ(11T − Ip), θ ∈ (0, 1).(5.3)

We generate multivariate random vector Xi according to the following mod-
el:

Xij = δXi,j−1 +
√
θfi +

√
(1− δ2)(1− θ)εij , i = 1, ..., n, j = 1, ..., p,

where Xi0, fi and εij are i.i.d. and have mean 0, variance 1. We consider
three setups for the distribution of Xi0, fi and εij : (i) standard normal; (ii)
standardized Gamma(4,1); and (iii) standardized student t5. To study the
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size of the test, we generate the data by setting δ = 0 and θ = 0.15. In
contrast, we generate the data by setting δ = 0.4 and θ = 0.15, to access
the power of the test.

Table 3
Empirical sizes and powers for testing compound symmetry covariance structure in (5.3)

at 5% significance, based on 2000 replications with normal, gamma and student-t
innovations

Normal Gamma Student t
p Φa,α,θ ZLST Φa,α,θ Φa,α,θ

n 60 120 60 120 60 120 60 120
size
60 0.055 0.052 0.054 0.041 0.042 0.054 0.040 0.059
120 0.048 0.053 0.055 0.061 0.041 0.046 0.061 0.046
240 0.053 0.054 0.064 0.046 0.059 0.053 0.049 0.050
480 0.054 0.046 0.056 0.062 0.049 0.056 0.044 0.047
720 0.046 0.047 0.062 0.042 0.046 0.044 0.059 0.048
960 0.047 0.053 0.058 0.063 0.052 0.049 0.053 0.051
power
60 0.918 1.000 0.863 1.000 0.878 1.000 0.856 1.000
120 0.773 1.000 0.715 0.995 0.749 0.999 0.733 0.992
240 0.606 0.934 0.556 0.915 0.566 0.939 0.558 0.928
480 0.532 0.816 0.452 0.756 0.484 0.768 0.493 0.756
720 0.476 0.696 0.417 0.631 0.455 0.703 0.465 0.687
960 0.433 0.625 0.378 0.585 0.400 0.616 0.404 0.610

Another example is to test the rational quadratic covariance structure

H0a : σjk,0(θ) = (1 + θ2|j − k|2)−θ1/2, θ1 > 0, θ2 > 0.(5.4)

We generate random samples from multivariate model Xi = ΓXZi, with
ΓXΓ′X = Σ0(θ). The components of Zi = (Zi1, ..., Zip)

′ are i.i.d. We consider
the following covariance structure Σ0(θ),

σjk,0(θ) = (1− δ)(1 + θ2|j − k|2)−θ1/2 + δ · 0.4|j−k|, 1 ≤ j, k ≤ p,

where 0 ≤ δ < 1 and θ1, θ2 > 0. Similarly, three distributions Zij are
concerned: (i) standard normal; (ii) standardized Gamma(4,1); and (iii) s-
tandardized student t5. To study the size of the test, we generate the data
by setting δ = 0, θ1 = 0.4 and θ2 = 0.4. In contrast, we generate the data
by setting δ = 0.4, θ1 = 0.4 and θ2 = 0.4, to evaluate the power of the test.

It can be seen from Tables 3 and 5 that both our test Φa,α,θ and ZLST
test control the size very well at the nominal level 0.05, for both examples.
The results in Tables 4 and 6 show that the estimated sizes of our new
test Φa,α,θ are close to the nominal level 0.01 in all the cases. For compound
symmetry covariance structure, the estimated sizes of ZLST test are close to
the nominal level 0.01 only when n = 120. When n = 60, ZLST test leads to
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Table 4
Empirical sizes and powers for testing compound symmetry covariance structure in (5.3)

at 1% significance, based on 10000 replications with normal, gamma and student-t
innovations

Normal Gamma Student t
p Φa,α,θ ZLST Φa,α,θ Φa,α,θ

n 60 120 60 120 60 120 60 120
size
60 0.0089 0.0114 0.0127 0.0113 0.0101 0.0079 0.0084 0.0093
120 0.0093 0.0121 0.0126 0.0111 0.0100 0.0104 0.0105 0.0107
240 0.0096 0.0088 0.0137 0.0110 0.0112 0.0096 0.0097 0.0095
480 0.0104 0.0112 0.0153 0.0116 0.0079 0.0116 0.0087 0.0109
720 0.0085 0.0094 0.0161 0.0103 0.0111 0.0105 0.0117 0.0092
960 0.0107 0.0096 0.0174 0.0121 0.0102 0.0103 0.0108 0.0102
power
60 0.807 1.000 0.779 0.999 0.794 1.000 0.780 1.000
120 0.645 1.000 0.580 0.980 0.628 0.994 0.622 0.989
240 0.455 0.889 0.408 0.845 0.449 0.857 0.436 0.845
480 0.354 0.679 0.305 0.623 0.342 0.667 0.337 0.669
720 0.325 0.558 0.298 0.499 0.309 0.528 0.305 0.536
960 0.282 0.516 0.251 0.460 0.273 0.499 0.261 0.483

Table 5
Empirical sizes and powers for testing rational quadratic covariance structure in (5.4) at

5% significance, based on 2000 replications with normal, gamma and student-t
innovations

Normal Gamma Student t
p Φa,α,θ ZLST Φa,α,θ Φa,α,θ

n 60 120 60 120 60 120 60 120
size
60 0.042 0.049 0.056 0.040 0.060 0.049 0.053 0.047
120 0.051 0.047 0.045 0.048 0.047 0.053 0.043 0.058
240 0.049 0.053 0.046 0.047 0.043 0.045 0.044 0.054
480 0.049 0.054 0.059 0.045 0.044 0.045 0.048 0.048
720 0.046 0.045 0.056 0.053 0.058 0.047 0.052 0.043
960 0.056 0.051 0.051 0.048 0.050 0.053 0.051 0.047
power
60 0.226 0.498 0.090 0.311 0.221 0.530 0.228 0.485
120 0.234 0.633 0.099 0.389 0.240 0.610 0.261 0.608
240 0.270 0.717 0.126 0.457 0.311 0.701 0.289 0.691
480 0.339 0.779 0.124 0.498 0.317 0.761 0.348 0.780
720 0.385 0.848 0.135 0.525 0.357 0.809 0.376 0.844
960 0.465 0.903 0.143 0.562 0.431 0.884 0.457 0.923
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Table 6
Empirical sizes and powers for testing rational quadratic covariance structure in (5.4) at

1% significance, based on 10000 replications with normal, gamma and student-t
innovations

Normal Gamma Student t
p Φa,α,θ ZLST Φa,α,θ Φa,α,θ

n 60 120 60 120 60 120 60 120
size
60 0.0111 0.0113 0.0190 0.0231 0.0087 0.0117 0.0079 0.0125
120 0.0088 0.0104 0.0196 0.0184 0.0089 0.0120 0.0104 0.0088
240 0.0111 0.0097 0.0176 0.0170 0.0107 0.0103 0.0086 0.0084
480 0.0106 0.0114 0.0177 0.0161 0.0097 0.0101 0.0098 0.0102
720 0.0096 0.0097 0.0169 0.0141 0.0113 0.0110 0.0095 0.0097
960 0.0102 0.0093 0.0171 0.0168 0.0105 0.0096 0.0099 0.0096
power
60 0.082 0.256 0.028 0.137 0.093 0.267 0.072 0.248
120 0.096 0.369 0.032 0.177 0.100 0.355 0.095 0.318
240 0.138 0.428 0.036 0.230 0.135 0.425 0.129 0.421
480 0.182 0.466 0.039 0.260 0.164 0.465 0.173 0.446
720 0.232 0.507 0.046 0.276 0.205 0.498 0.218 0.499
960 0.302 0.556 0.051 0.298 0.264 0.545 0.281 0.549

an inflatted size at the nominal level 0.01. For rational quadratic covariance
structure, ZLST test suffers from the size distortion at the nominal level 0.01,
the actual sizes are around 0.02. This reflects that our proposed method has
more accurate small tail probabilities than ZLST test.

The power results show that the proposed test has a higher power than
ZLST test in all settings, especially for rational quadratic covariance struc-
ture. It can be seen in Tables 3 and 4 that the estimated powers of both tests
tend to decrease when the dimension p increases. However, for the rational
quadratic covariance structure in Tables 5 and 6, the estimated powers rise
as the dimension p increases. Overall, for both examples, the new test Φa,α,θ

significantly outperforms ZLST test.
We then conduct simulations to evaluate the performance of the test for

H0b : Σ12 = Σ12,0, where Σ12,0 is pre-assigned. We partition equally the
entire random vector Xi into two subvectors of p1 = p/2 and p2 = p − p1.
Without loss of generality, we shall always take Σ12,0 = 0 in the simulations.
Factor models for Xij are considered. In the size evaluation, the following
linear factor model is considered:

Xij =

{
bTj1fi1 + εij , 1 ≤ j ≤ p1,

bTj2fi2 + εij , p1 + 1 ≤ j ≤ p,
(5.5)

where bj1, bj2 are vectors of factor loadings, fi1, fi2 is a 2 × 1 vector of
common factors and εij is the error term, fi1, fi2 and εij are independent.
All elements of bj1 and bj2, j = 1, ..., p, are chosen from Unif(0.5, 2.5).
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In the simulation for the power, we generate the sample from the following
factor model.

Xij =

{
bTj1fi1 + ρfi3 + εij , 1 ≤ j ≤ p1,

bTj2fi2 + ρfi3 + εij , p1 + 1 ≤ j ≤ p,
(5.6)

where fi3 is a 1 × 1 common factor and fi1, fi2, fi3 and εij are indepen-
dent. In this study, ρ is chosen to be 1.5. Same distributions are consid-
ered for i.i.d sequences fi1,fi2, fi3 and (εij)

p
j=1. The sample sizes are tak-

en to be n = 20, 50, 100, while the dimension p varies over the values
32, 64, 128, 256, 512, 1024. The simulation results for the second test are re-
ported in Tables 7 and 8, based on 2000 replications.

Table 7
Empirical sizes for H0b : Σ12 = 0 at 5% significance, based on 2000 replications with

normal, gamma and student-t innovations in Model (5.5)

p Proposed Test Φb,α CCK
n 20 50 100 20 50 100

Normal
32 0.056 0.048 0.049 0.011 0.020 0.027
64 0.045 0.057 0.043 0.012 0.015 0.018
128 0.053 0.052 0.063 0.012 0.020 0.021
256 0.054 0.059 0.049 0.009 0.012 0.023
512 0.062 0.053 0.057 0.008 0.018 0.019
1024 0.055 0.049 0.055 0.004 0.014 0.019
Gamma
32 0.058 0.055 0.060 0.007 0.018 0.026
64 0.055 0.052 0.054 0.006 0.015 0.025
128 0.052 0.046 0.044 0.008 0.015 0.020
256 0.046 0.054 0.046 0.007 0.013 0.019
512 0.059 0.055 0.050 0.003 0.013 0.017
1024 0.053 0.045 0.049 0.003 0.012 0.016
Student t
32 0.052 0.054 0.044 0.015 0.013 0.014
64 0.057 0.051 0.051 0.011 0.013 0.016
128 0.054 0.045 0.048 0.012 0.013 0.018
256 0.051 0.045 0.048 0.009 0.010 0.017
512 0.055 0.046 0.048 0.003 0.006 0.010
1024 0.060 0.047 0.054 0.001 0.004 0.008

Table 7 reports the empirical sizes of the proposed test Φb,α (c.f. Appendix
A) and the CCK test for the factor model at the 5% significance level. For
each choice of p and n, it can be seen that the estimated sizes are reasonably
close to the nominal level 0.05 for the proposed test, whereas the sizes of
the CCK test tend to be smaller than the nominal level. It is observed that
the empirical sizes of the CCK test decreases with p, but increases with n.

Table 8, which compares the powers, shows that the new test Φb,α uni-
formly and significantly outperforms the CCK test over all choices of n and
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Table 8
Empirical powers for H0b : Σ12 = 0 at 5% significance, based on 2000 replications with

normal, gamma and student-t innovations in Model (5.6)

p Proposed Test Φb,α CCK
n 20 50 100 20 50 100

Normal
32 0.263 0.624 0.923 0.075 0.279 0.764
64 0.274 0.608 0.916 0.060 0.257 0.595
128 0.256 0.619 0.910 0.049 0.266 0.573
256 0.263 0.621 0.916 0.045 0.234 0.553
512 0.273 0.616 0.902 0.034 0.238 0.522
1024 0.270 0.637 0.910 0.022 0.225 0.501
Gamma
32 0.252 0.627 0.893 0.059 0.247 0.661
64 0.259 0.630 0.898 0.045 0.226 0.567
128 0.240 0.633 0.883 0.037 0.201 0.509
256 0.265 0.627 0.907 0.022 0.178 0.508
512 0.248 0.611 0.901 0.022 0.174 0.482
1024 0.256 0.628 0.918 0.016 0.133 0.402
Student t
32 0.258 0.610 0.864 0.053 0.268 0.658
64 0.248 0.619 0.873 0.038 0.226 0.517
128 0.244 0.634 0.876 0.022 0.169 0.493
256 0.267 0.611 0.870 0.016 0.140 0.415
512 0.249 0.626 0.859 0.010 0.106 0.353
1024 0.266 0.605 0.886 0.003 0.071 0.289

p. We also observed that the powers of the CCK test improves with the
sample size, but deteriorates as the dimension p increases in our simulation
setting.
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SUPPLEMENTARY MATERIAL TO “TEST OF HIGH
DIMENSIONAL COVARIANCE STRUCTURES”

By Yuefeng Han and Wei Biao Wu

University of Chicago
In this supplementary material, we shall provide testing covariance be-

tween two subvectors, power analysis, real data analysis, additional simu-
lations, the proofs of main results in the paper and some lemmas that are
useful in proofs of the paper.

The readers are referred to Appendix A for properties of the test for the
off-diagonal sub-matrix. Power evaluations are presented in Appendix B. A
real data example is illustrated in Appendix C. Appendix D includes more
simulation results. All technical details are relegated to Appendix E.

We first formally define JB(S1, θ̂) and CB,Bc(S1, θ̂) in Section 3 of the
paper. Let B ⊂ {1, 2, ..., n}, Bc = {1, ..., n}\B, and |B| = |Bc| = m = n/2.
Define respectively:

JB(S1, θ̂) =
∑

(j,k)∈S1

Rjk(B, θ̂),

CB,Bc(S1, θ̂) =
∑

(j,k)∈S1

Njk(B,B
c, θ̂),

and

Rj,k(B, θ̂) =
1

m(m− 1)

∗∑
i1,i2∈B

Xi1jXi1kXi2jXi2k −
2

m(m− 1)(m− 2)

∗∑
i1,i2,i3∈B

Xi1jXi2jXi2kXi3k

+
1

m(m− 1)(m− 2)(m− 3)

∗∑
i1,i2,i3,i4∈B

Xi1jXi2jXi3kXi4k

+ σjk,0(θ̂B)2 − 2

n
σjk,0(θ̂B)

n∑
i1∈B

Xi1jXi1k +
2

n(n− 1)
σjk,0(θ̂B)

∗∑
i1,i2∈B

Xi1jXi2k.

Njk(B,B
c, θ̂) =

 1

m

∑
i1∈B

Xi1jXi1k −
1

m(m− 1)

∗∑
i1,i2∈B

Xi1jXi2k − σjk,0(θ̂B)


·

 1

n−m
∑
i3∈Bc

Xi3jXi3k −
1

(n−m)(n−m− 1)

∗∑
i3,i4∈Bc

Xi3jXi4k − σjk,0(θ̂Bc)

 ,
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where θ̂B (resp. θ̂Bc) is the least squares estimator of equation (3.1) via
{Xi}i∈B (resp. {Xi}i∈Bc).

APPENDIX A: TESTING COVARIANCE BETWEEN TWO
SUBVECTORS

Consider partition of data vector X into two subvectors of dimension p1

and p2, i.e.,

X =

(
X(1)

X(2))

)
,

and the partition of Σ by (
X(1)

X(2))

)
,

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

In this section, we intend to test H0b : Σ12 = Σ12,0 vs H1b : Σ12 6= Σ12,0,
where Σ12,0 is pre-assigned. Recall (2.2) for Mjk. With the same considera-

tions as we proposed for the estimator T̂n, it can be checked that an unbiased
estimator of tr(Σ12 − Σ12,0)2 is Q̂n = TS2 with

(A.1) Q̂n =
∑

(j,k)∈S2

Mjk, where S2 = {(j, k) : 1 ≤ j ≤ p1, p1 + 1 ≤ k ≤ p}.

Testing for subvectors was also considered in Li and Chen (2012) in the
case of the two samples. They only established asymptotic normality un-
der a restrictive condition on the covariances, however, our approximating
distribution is more general.

Denote Ui = W(Xi,S2) and Ūn =
∑n

i=1Ui/n. Then the covariance ma-
trix Ξ = (γα,α′)α,α′∈S2 for Ui is p1p2× p1p2 with entries γα,α′ given in (2.5).
The square of Frobenius norm of Ξ is

|Ξ|2F =
∑

α,α′∈S2

γ2
αα′ := |E(UUT )|2F .

Then, a strategy similar to the previous section is to derive asymptotic
distribution of Q̂n, construct a half-sampling estimator of the empirical dis-
tribution of nQ̂n, and use it to develop a test procedure.

Assumption A.1. For some constant C > 0,

|Ξ|2F ≥ C
(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21))

)
.(A.2)
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This condition is similar to Assumption 2.2 in the paper.
Then Q̂n can be approximated by a linear combination of χ2

1 random
variables, given in the following theorem.

Theorem A.1. Under Assumption 2.1 and A.1, suppose ‖ξ11‖4+2δ <∞
where 0 < δ ≤ 1, if H0b holds, then

(A.3) sup
t

∣∣∣∣∣P
(
nQ̂n
|Ξ|F

≤ t

)
− P

(
p1p2∑
d=1

θd
|Ξ|F

(ηd − 1) ≤ t

)∣∣∣∣∣ = O(n−δ/(10+4δ)),

where θ1 ≥ ... ≥ θp1p2 ≥ 0 are eigenvalues of Ξ and ηd are i.i.d. χ2
1.

Similar to the analysis on T̂n, the approximating distribution of Q̂n under
alternatives can be established in the following corollaries.

Corollary A.1. Suppose ‖ξ11‖4+2δ <∞ with 0 < δ ≤ 1. Assume that
tr(Σ12−Σ12,0)2/|Ξ|F = O(1). Under Assumption 2.1 and A.1, we have that
(A.4)

sup
t

∣∣∣∣∣P
(
nQ̂n
|Ξ|F

≤ t

)
− P

(
(Z +

√
nµZ)T (Z +

√
nµZ)− tr(Ξ)

|Ξ|F
≤ t
)∣∣∣∣∣ = O(n−δ/(10+4δ)),

where Z ∼ N(0,Ξ) and µZ = (σ1,p1+1−σ1,p1+1,0, σ1,p1+2−σ1,p1+2,0, ..., σp1,p1+p2−
σp1,p1+p2,0)T .

On the other hand, if tr(Σ12−Σ12,0)2/|Ξ|F →∞, under Assumptions 2.1
and A.1, we have that nQ̂n/|Ξ|F →∞ in probability.

The asymptotic normality of Q̂n is summarized in the following corollary,
whose proof is trivial through the argument in Corollary 2.2.

Corollary A.2. Let θ1 ≥ ... ≥ θp1p2 ≥ 0 be eigenvalues of Ξ. Under
conditions of Theorem A.1, the classical central limit theorem

nQ̂n
|Ξ|F

d−→ N(0, 2)

holds if and only if

ρΞ → 0, as p→∞.(A.5)

If Xi follows the linear process model, that is, under Assumption 2.1 with
aj,l1l2...li = 0 for all 1 ≤ l1 < l2 < ... < li ≤ N, 2 ≤ i ≤ d, 1 ≤ j ≤ p, then,
(A.5) is equivalent to tr(Σ4

11)tr(Σ4
22)+tr2((Σ12Σ21)2) = o(tr2(Σ2

11)tr2(Σ2
22));

or equivalently, tr(Σ3
11)tr(Σ3

22) + tr((Σ12Σ21)3) = o(tr3/2(Σ2
11)tr3/2(Σ2

22)); or
equivalently, θ1/|Ξ|F → 0.
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It is noted that the condition tr(Σ4
11)tr(Σ4

22)+tr2((Σ12Σ21)2) = o(tr2(Σ2
11)tr2(Σ2

22))
is milder than the one tr(Σ4) = o(tr2(Σ2)) for linear process models; c.f. Li
and Chen (2012). Since tr(Σ2) � tr(Σ2

11 + Σ2
22) and tr(Σ4) � tr(Σ4

11 + Σ4
22 +

(Σ12Σ21)2), tr(Σ4) = o(tr2(Σ2)) always implies the one in Corollary A.2.
The condition tr(Σ4

11)tr(Σ4
22) + tr2((Σ12Σ21)2) = o(tr2(Σ2

11)tr2(Σ2
22)) may

be violated in high dimensional data, for instance the linear factor model
mentioned in Section 2.2.

To formulate a test procedure, we use the half-sampling approach to con-
struct an unbiased and consistent estimator of the cumulative distribution
function of nQ̂n. Consider a subset B ⊂ {1, 2, ..., n} of size m = dn/2e.
Define JB(S2,Σ12,0), CB,Bc(S2,Σ12,0):

JB(S2,Σ12,0) =
∑

(j,k)∈S2

Rjk(B, σjk,0),(A.6)

CB,Bc(S2,Σ12,0) =
∑

(j,k)∈S2

Njk(B,B
c, σjk,0),(A.7)

where Rjk(B, σjk,0) and Njk(B,B
c, σjk,0) are defined in (2.13) and (2.14)

respectively.
The half-sampling procedure samples L subsets of size m = dn/2e without

replacement from the original n data points, uniformly at random. Let index
sets B1, B2, ..., BL ⊂ B, with B := {B : B ⊂ {1, ..., n}, |B| = m}. The
empirical distribution of P(nQ̂n ≤ t) is estimated by F̃Q(t), where
(A.8)

F̃Q(t) =
1(
n
m

) ∑
B∈B

1m(1−m/n)(JBl (S2,Σ12,0)+JBc
l
(S2,Σ12,0)−2CBl,B

c
l
(S2,Σ12,0))≤t.

Similarly as (2.16), define its stochastic approximation F̂L,Q(t). By the Dvoretzky-
Kiefer-Wolfowitz-Massart inequality,

P∗
(

sup
t
|F̂L,Q(t)− F̃Q(t)| ≥ u

)
≤ 2e−2Lu2 .(A.9)

Define the α-quantile of half-sampling estimator F̂Q(t) as follows:

g∗α = inf
{
g : F̃Q(g) ≥ α

}
,(A.10)

which can be approximated by g∗L,α = inf
{
g : F̂L,Q(g) ≥ α

}
.

Theorem A.2. Under Assumption 2.1 and A.1, suppose ‖ξ1l‖4+2δ <∞
where 0 < δ ≤ 1. Let m = dn/2e, then under the null hypothesis H0b,

sup
t

E|F̂Q(t)− P(nQ̂n ≤ t)|2 = O(n−δ/(10+4δ)).(A.11)
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Based on the results of Theorems A.1 and A.2, at a given significance
level 0 < α < 1, asymptotically α-level test can be defined as Φb,α by

Φb,α = 1(nQ̂n ≥ g∗1−α)

where g∗1−α is the (1 − α)th quantile of F̂Q(t). In practice, we use g∗L,1−α
instead of g∗1−α. The null hypothesis H0b is rejected whenever Φb,α = 1.
Power analysis is discussed in Section B.

APPENDIX B: POWER ANALYSIS

B.1. Power analysis for testing off-diagonal covariance struc-
ture. We now turn our attention to the power analysis of T̂n. Let βn(Σ, α) =
P(nT̂n ≥ y∗1−α|H1a) be the power of the test under the alternative hypoth-
esis H1a : σjk 6= σjk,0 for some (j, k) ∈ S1, where y∗1−α is the (1 − α)th

quantile of F̃ (t), 0 < α < 1. Let Y ∼ N(0,Γ) and µY = (σ12 − σ12,0, σ13 −
σ13,0, ..., σp,p−1 − σp,p−1,0)T . Denote ỹ1−α = y∗1−α/|Γ|F . From Theorem 2.1,

we can obtain that P(nT̂n ≥ y∗1−α) = α + o(1). Recall Theorem 2.1 im-

plies that nT̂n/|Γ|F can be approximated by V :=
∑p(p−1)

d=1 λd(ηd − 1)/|Γ|F
with EV 2 = 2. Then P(|V | ≥ 2α−1/2) ≤ αEV 2/4 = α/2 and P(|V | ≥
2(1 − α)−1/2) ≤ (1 − α)/2. Hence P(V ≥ 2α−1/2) ≤ α/2 and P(V ≥
−2(1 − α)−1/2) ≥ (1 + α)/2. Thus, for n large enough, we have −2(1 −
α)−1/2 < ỹ1−α < 2α−1/2. Thus ỹ1−α = O(1). From Corollary 2.1, when∑p

j 6=k(σjk − σjk,0)2/|Γ|F = O(1), we note that

βn(Σ, α) = P

(
Y TY − tr(Γ)

|Γ|F
≥ ỹ1−α −

n
∑

j 6=k(σjk − σjk,0)2

|Γ|F
−

2
√
nµTY Y

|Γ|F

)
+ o(1)

(B.1)

Elementary calculation shows that

√
nµTY Y

|Γ|F
= OP


√
nµTY ΓµY

|Γ|F

 .(B.2)

Note that

µTY ΓµY ≤ ρ(Γ)
∑
j 6=k

(σjk − σjk,0)2,

where ρ(Γ) is the spectral norm of Γ.
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Thus, (B.1) and (B.2) indicate that the signal to noise ratio

SNR(Σ) =
∑
j 6=k

(σjk − σjk,0)2/|Γ|F

is instrumental in determining the power of the test. Furthermore,

βn(Σ, α) ≤ P

Y TY − tr(Γ) + nµTY µY + 2
√
Y TY T

√
µTY µY

|Γ|F
≥ ỹ1−α

+ o(1)

≤ P

(
Y TY − tr(Γ)

|Γ|F
≥ ỹ1−α

2
− nSNR(Σ)

2
−
√
nSNR(Σ)

)
+ o(1).

Similarly,

βn(Σ, α) ≥ P

Y TY − tr(Γ) + nµTY µY − 2
√
Y TY T

√
µTY µY

|Γ|F
≥ ỹ1−α

+ o(1)

≥ P

(
Y TY − tr(Γ)

|Γ|F
≥ ỹ1−α − nSNR(Σ) + 2

√
nSNR(Σ)

)
+ o(1).

Then under the alternative H1a, when
∑p

j 6=k(σjk − σjk,0)2/|Γ|F = O(1), the
asymptotic power is bounded above and below by

P

(
Y TY − tr(Γ)

|Γ|F
≥ ỹ1−α − nSNR(Σ) + 2

√
nSNR(Σ)

)
+ o(1) ≤ βn(Σ, α)

≤ P

(
Y TY − tr(Γ)

|Γ|F
≥ ỹ1−α

2
− nSNR(Σ)

2
−
√
nSNR(Σ)

)
+ o(1).

By Corollary 2.1, when
∑p

j 6=k(σjk − σjk,0)2/|Γ|F →∞, βn(Σ, α)→ 1.
If the difference between σjk and σjk,0 for j 6= k is not too small so

that |Γ|F = O(n
∑

j 6=k(σjk − σjk,0)2), the test will be powerful. When p
is fixed, this condition trivially holds while n → ∞. For high dimensional
data, if n

∑
j 6=k(σjk − σjk,0)2/|Γ|F → ∞, the power will converge to 1. If

n
∑

j 6=k(σjk − σjk,0)2/|Γ|F → 0, the test cannot distinguish H0a from H1a,
i.e. βn(Σ, α)→ α. Furthermore, to better appreciate the power of the test,
let

ϑ0 =

√∑
j 6=k

(σjk − σjk,0)2/(p(p− 1))

be the average signal strength. Then the test has a nontrivial power if ϑ0 is at
least the order of

√
|Γ|F /(np2), while the order is n−1/2 for fixed dimension

situations p = O(1).
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Next, we consider cases involving sparse and faint signals. Let Σ = I+υυ′,
where υ = (δ, ..., δ, 0, ..., 0)′ with the first s elements to be δ and otherwise 0.
Since the signals are sparse and faint, we assume the signal strength δ = o(1)
and sparse level s = o(p). If Xi follows the linear process model, then basic
calculation shows that |Γ|F � |Σ|2F � p+s2δ4, and

∑
j 6=k(σjk−σjk,0) = s2δ2.

That is, SNR(Σ) � s2δ2/p. Hence, if ns2δ2/p → ∞, or equivalently sδ �√
p/n, the power converges to 1. As the minimum rate of detectable signals

is usually (log(p)/n)1/2, sδ �
√
p/n implies s � √p. Then, the number of

non-zero covariances is at a higher order than p. The test could be powerless
if the number of signal is smaller than p. This is due to the natural of the
L2 type statistics. We thank the reviewer for pointing this out.

It is also worth noting that our test statistics based on quadratic forms are
designed for general alternative hypotheses without imposing any structure
assumptions on covariances. If we are interested in specific alternatives such
as the spiked covariance structures for Gaussian data, one can apply for
example Onatski, Moreira and Hallin (2013, 2014).

B.2. Power analysis for testing covariance between two subvec-
tors. Let βn(Σ12, α) = P(nQ̂n ≥ g∗1−α|H1b) be the power of the test under
the alternative hypothesis H1b : σjk 6= σjk,0 for some (j, k) ∈ S2, where

g∗1−α is the (1 − α)th quantile of F̂Q(t), 0 < α < 1. Let Z ∼ N(0,Ξ)
and µZ = (σ1p1+1 − σ1p1+1,0, σ1p1+2 − σ1p1+2,0, ..., σp1p1+p2 − σp1p1+p2,0)T .
Denote g̃1−α = g∗1−α/|Ξ|F , then g̃1−α = O(1). From Corollary A.1, when
tr(Σ12 − Σ12,0)2/|Ξ|F = O(1), we note that

βn(Σ12, α) = P

(
ZTZ + 2

√
nµTZZ − tr(Ξ)

|Ξ|F
≥ g̃1−α −

ntr{(Σ12 − Σ12,0)(Σ12 − Σ12,0)T }
|Ξ|F

)
+ o(1)

(B.3)

Similar to Section B.1,

SNR(Σ12) = tr{(Σ12 − Σ12,0)(Σ12 − Σ12,0)T }/|Ξ|F

is key quantity in determining the power of the test. When when tr(Σ12 −
Σ12,0)2/|Ξ|F = O(1), it can be shown that

P

(
ZTZ − tr(Ξ)

|Ξ|F
≥ g̃1−α − nSNR(Σ12) + 2

√
nSNR(Σ12)

)
+ o(1) ≤ βn(Σ12, α)

≤ P

(
ZTZ − tr(Ξ)

|Ξ|F
≥ g̃1−α

2
− nSNR(Σ12)

2
−
√
nSNR(Σ12)

)
+ o(1).

When tr(Σ12 − Σ12,0)2/|Ξ|F →∞, by Corollary A.1, βn(Σ12, α)→ 1.
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If ∆ := ntr{(Σ12 − Σ12,0)(Σ12 − Σ12,0)T }/
√

tr(Σ2
11)tr(Σ2

22) → ∞, the
power will converge to 1. If ∆ → 0, the test cannot distinguish H0b from
H1b, i.e. βn(Σ12, α) → α. A further analysis on the power can be made,
which is similar to Section B.1. Details are omitted.

APPENDIX C: REAL DATA ANALYSIS

We now apply our testing procedures to the analysis of a colorectal
cancers dataset (Sabates-Bellver et al. (2007)), preprocessed from NCBI’s
Gene Expression Omnibus, accessible through GEO Series accession number
GSE8671 (http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE8671).
This study consists of 32 subjects with colorectal adenomas. The tran-
scriptomes (RNA) of 32 adenomatous polyps (tumor group) and segment-
matched samples of normal colorectal mucosa (normal group) from the same
individuals are measured. There are 54,675 genes in this microarry data.
What we are interested in is to test the existence of associations between
two subvectors, which can be useful for identifying sets of genes which are
significantly correlated.

We consider genetic pathways of this colorectal cancers dataset. Abnormal
regulation of gene pathways is the key causative factor in colorectal cancers.
According to the molecular signature database, we refer to the colorectal
cancer pathway as the targeted pathway of colorectal cancer. Among the
54,675 genes, 119 are mapped to this pathway. There are many pathways
related to colorectal cancer, including several major signaling pathways. As-
sembled based on existing literature (see Baudot, De La Torre and Valen-
cia (2010); Colussi et al. (2013)), we consider the WNT signaling pathway
(263 genes), MAPK signaling pathway (475 genes), p53 signaling pathway
(121 genes), mTOR signaling pathway (90 genes), GnRH signaling path-
way (192 genes), Adipocytokine signaling pathway (117 genes) and Type
I diabetes mellitus pathway (84 genes). Note that many of the pathways
share genes while our method requires group indices to be non-overlapping
since two overlapped groups are obviously dependent of each other. To re-
move the influence of such trivial dependence, we shall test whether the
colorectal cancer pathway is correlated with these common pathways af-

ter removing overlapping genes. Let X
(1)
i , ..., X

(8)
i be the expression levels

of individual i from the tumor group for the colorectal cancer pathway,
WNT signaling pathway, MAPK signaling pathway, p53 signaling pathway,
mTOR signaling pathway, GnRH signaling pathway, Adipocytokine signal-
ing pathway and Type I diabetes mellitus pathway, respectively. The null

hypotheses are HT
01 : cov(X

(1)
i , X

(2)
i ) = 068×212, HT

02 : cov(X
(1)
i , X

(3)
i ) =

074×430, HT
03 : cov(X

(1)
i , X

(4)
i ) = 0109×111, HT

04 : cov(X
(1)
i , X

(5)
i ) = 094×65,
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HT
05 : cov(X

(1)
i , X

(6)
i ) = 0102×175, HT

06 : cov(X
(1)
i , X

(7)
i ) = 0107×105, HT

07 :

cov(X
(1)
i , X

(8)
i ) = 0119×84. Similar null hypothesis HN

01, ...,H
N
07 can be for-

mulated for the normal group. Our proposed method using half sampling ap-
proach (Φb,α) is compared with the test proposed in Chernozhukov, Chetverikov
and Kato (2013) which uses Gaussian Multiplier Bootstrap (denoted by C-
CK), and a test method given in Qiu and Chen (2012) (abbr. QC)). The
results are summarized in the following table.

Table 9
Estimated p-values of tests for covariances between pathway “colorectal cancer” and other

different pathways, base on N = 105 half-sampling implementations

tumor group normal group
pathway Φb,α QC CCK Φb,α QC CCK

WNT 0.00001 1.65×10−8 0.38612 0.11247 0.04677 0.66285
MAPK 0.00002 4.44×10−16 0.39525 0.00000 6.81×10−10 0.42463

p53 0.00011 7.48×10−7 0.34558 0.00018 5.79×10−7 0.72479
mTOR 0.16414 0.00691 0.68261 0.00116 0.00016 0.46266
GnRH 0.00008 6.93×10−11 0.31194 0.00005 3.30×10−8 0.17098

Adipocytokine 0.00042 1.10×10−9 0.12459 0.00240 1.81×10−5 0.14529
Type I diabetes 0.02457 0.01303 0.02527 0.08692 0.01929 0.81330

It can be seen from Table 9 that the CCK test is not able to reject any null
hypotheses at 5% level. All the p-values obtained by the proposed test and
QC test are very small, and have similar magnitudes. Using the proposed
test Φb,α and QC test, HT

01 is rejected at 5% level, suggesting that there is
a substantial correlation between the colorectal cancer pathway and WNT
signaling pathway. However, for the normal group, HN

01 is not rejected by the
proposed test, since it gives a p-value of 0.11247, while rejected by QC test
with p-vlaue 0.04677. In contrast, using the proposed test, HT

04 for tumor
group is not rejected at 5% level while HN

04 for normal group is rejected.
The proposed test also suggests that, at 0.1% level, both HT

04 and HN
04 are

rejected. Using QC test, both HT
04 and HN

04 are rejected at 5% level, and
only HN

04 is rejected at 0.1% level. Moreover, at 0.1% level, the proposed
test suggests that HN

06 for normal group is rejected.

APPENDIX D: ADDITIONAL SIMULATION RESULTS

In this section we present additional simulation results comparing the
numerical performance of the proposed tests with that of other tests, par-
ticularly in the setting tr(Σ4)/tr2(Σ2) → 0 and the nominal level α = 0.01
case.
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D.1. Additional simulation results for the test Φa,α. We now
consider the model (5.1) in the paper to see the size behavior, that is,

Xij =
√

∆jZij , i = 1, ..., n, j = 1, ..., p,(D.1)

and model (5.2) in the paper for power analysis,

Xij =
√

∆j(Zi,j + 3Zi,j+1), i = 1, ..., n, j = 1, ..., p,(D.2)

at the nominal level α = 0.01. Let ∆j =
√
p · Unif(0.5, 2.5) for j = 1, 2,

and, ∆j = Unif(0.5, 2.5) for j = 3, ..., p. Three distributions are assigned to
the i.i.d. Zij : (i) standard normal; (ii) centralized Gamma(4,1); and (iii) the
student t5. The empirical size and power of the proposed test Φa,α for H0a,
reported in Tables 10, are estimated from 10000 replications. The resampling
implementations are 5000.

Table 10
Empirical sizes and powers for H0a : σjk = σjk,0 for all j 6= k at 1% significance level,
based on 10000 replications with normal, gamma and student-t innovations in Models

(D.1) and (D.2)

p size for Φa,α power for Φa,α
n 20 50 100 20 50 100

Normal
32 0.0126 0.0110 0.0112 0.142 0.470 0.822
64 0.0103 0.0095 0.0092 0.154 0.418 0.799
128 0.0138 0.0125 0.0087 0.143 0.431 0.761
256 0.0069 0.0118 0.0116 0.160 0.412 0.787
512 0.0130 0.0116 0.0100 0.143 0.400 0.751
1024 0.0123 0.0091 0.0104 0.140 0.394 0.787
Gamma
32 0.0130 0.0114 0.0102 0.145 0.420 0.813
64 0.0124 0.0093 0.0101 0.167 0.444 0.797
128 0.0138 0.0097 0.0120 0.145 0.398 0.781
256 0.0117 0.0111 0.0096 0.170 0.442 0.765
512 0.0084 0.0103 0.0115 0.162 0.402 0.761
1024 0.0138 0.0088 0.0124 0.164 0.379 0.794
Student t
32 0.0120 0.0105 0.0088 0.138 0.437 0.803
64 0.0091 0.0096 0.0102 0.141 0.400 0.754
128 0.0104 0.0113 0.0105 0.151 0.439 0.775
256 0.0103 0.0112 0.0123 0.156 0.407 0.747
512 0.0101 0.0102 0.0094 0.148 0.413 0.741
1024 0.0113 0.0087 0.0117 0.139 0.421 0.716

In Table 10, the results indicate that our test control the size well when
n = 50, 100. We can observe notable fluctuation of empirical size when
sample size n = 20. Under the alternative hypothesis, the power rises as the
sample size increases.
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Then, we consider the setting tr(Σ4)/tr2(Σ2) → 0. We still consider the
same model (D.1) for the size analysis,

Xij =
√

∆jZij , i = 1, ..., n, j = 1, ..., p,(D.3)

and the model

Xij =
√

∆j(Zi,j + 0.2Zi,j+1), i = 1, ..., n, j = 1, ..., p,(D.4)

for power analysis. Here let ∆j = Unif(0.5, 2.5) for j = 1, ..., p. We present
the simulation results for H0a in Tables 11, 12, 13 and 14. The resampling
implementations are 5000.

Table 11
Empirical sizes for H0a : σjk = σjk,0 for all j 6= k at 5% significance level, based on 2000

replications with normal, gamma and student-t innovations in Model (D.3)

p Proposed Test Φa,α Qiu-Chen
n 20 50 100 20 50 100

Normal
32 0.048 0.045 0.050 0.072 0.048 0.049
64 0.045 0.056 0.055 0.063 0.057 0.056
128 0.052 0.055 0.048 0.060 0.056 0.059
256 0.060 0.045 0.047 0.070 0.056 0.053
512 0.061 0.045 0.048 0.057 0.053 0.046
1024 0.055 0.049 0.057 0.067 0.051 0.051
Gamma
32 0.041 0.046 0.049 0.052 0.048 0.043
64 0.050 0.051 0.051 0.067 0.049 0.053
128 0.048 0.045 0.048 0.069 0.057 0.059
256 0.051 0.041 0.043 0.062 0.052 0.041
512 0.045 0.053 0.046 0.066 0.055 0.051
1024 0.042 0.054 0.045 0.061 0.056 0.042
Student t
32 0.041 0.058 0.050 0.055 0.049 0.044
64 0.056 0.055 0.044 0.064 0.055 0.059
128 0.043 0.048 0.043 0.063 0.050 0.053
256 0.043 0.047 0.053 0.069 0.055 0.056
512 0.052 0.051 0.059 0.060 0.055 0.050
1024 0.049 0.052 0.055 0.067 0.057 0.052

The results in Table 11 show that, at the nominal level 5%, both our test
and Qiu-Chen test control the size very well when n = 50, 100. When sample
size n = 20, our proposed test still control the size very well, but the empir-
ical size of Qiu-Chen test is a bit larger than the nominal level 5%. It can
be seen from Table 13 that the estimated sizes of our proposed test are close
to the nominal level 1%, when n = 50, 100. When n = 20, our proposed test
encounters some fluctuations of empirical size. In contrast, Qiu-Chen test
only controls the size well when n = 100. When n = 50, Qiu-Chen test tends
to be a bit larger than the nominal level 1%. With small sample size n = 20,
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Table 12
Empirical powers for H0a : σjk = σjk,0 for all j 6= k at 5% significance level, based on

2000 replications with normal, gamma and student-t innovations in Model (D.4)

p Proposed Test Φa,α Qiu-Chen
n 20 50 100 20 50 100

Normal
32 0.132 0.398 0.884 0.090 0.323 0.818
64 0.154 0.401 0.894 0.113 0.359 0.818
128 0.148 0.411 0.901 0.118 0.342 0.854
256 0.154 0.414 0.912 0.133 0.380 0.846
512 0.152 0.402 0.909 0.123 0.332 0.862
1024 0.162 0.425 0.921 0.145 0.402 0.856
Gamma
32 0.166 0.371 0.888 0.111 0.323 0.802
64 0.162 0.391 0.899 0.134 0.361 0.817
128 0.154 0.405 0.912 0.136 0.351 0.869
256 0.182 0.415 0.928 0.116 0.360 0.883
512 0.169 0.428 0.927 0.140 0.353 0.885
1024 0.175 0.423 0.922 0.129 0.386 0.856
Student t
32 0.158 0.379 0.880 0.137 0.334 0.833
64 0.188 0.396 0.898 0.134 0.330 0.840
128 0.174 0.416 0.900 0.138 0.366 0.881
256 0.170 0.433 0.915 0.131 0.347 0.873
512 0.162 0.413 0.924 0.125 0.356 0.861
1024 0.176 0.415 0.934 0.135 0.368 0.883

Table 13
Empirical sizes for H0a : σjk = σjk,0 for all j 6= k at 1% significance level, based on
10000 replications with normal, gamma and student-t innovations in Model (D.3)

p Proposed Test Φa,α Qiu-Chen
n 20 50 100 20 50 100

Normal
32 0.0121 0.0088 0.0095 0.0161 0.0139 0.0101
64 0.0082 0.0094 0.0087 0.0172 0.0111 0.0113
128 0.0134 0.0114 0.0093 0.0168 0.0122 0.0108
256 0.0135 0.0089 0.0112 0.0170 0.0140 0.0114
512 0.0126 0.0087 0.0104 0.0196 0.0119 0.0114
1024 0.0124 0.0094 0.0105 0.0175 0.0137 0.0107
Gamma
32 0.0131 0.0103 0.0084 0.0162 0.0126 0.0086
64 0.0110 0.0095 0.0084 0.0166 0.0136 0.0102
128 0.0124 0.0114 0.0103 0.0165 0.0107 0.0090
256 0.0138 0.0086 0.0097 0.0154 0.0123 0.0107
512 0.0123 0.0085 0.0107 0.0170 0.0108 0.0097
1024 0.0084 0.0104 0.0105 0.0157 0.0115 0.0103
Student t
32 0.0130 0.0115 0.0110 0.0128 0.0085 0.0100
64 0.0104 0.0101 0.0095 0.0175 0.0110 0.0086
128 0.0083 0.0081 0.0105 0.0166 0.0102 0.0107
256 0.0135 0.0103 0.0104 0.0167 0.0126 0.0118
512 0.0124 0.0111 0.0113 0.0172 0.0124 0.0102
1024 0.0137 0.0113 0.0097 0.0181 0.0115 0.0130
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Table 14
Empirical powers for H0a : σjk = σjk,0 for all j 6= k at 1% significance level, based on

10000 replications with normal, gamma and student-t innovations in Model (D.4)

p Proposed Test Φa,α Qiu-Chen
n 20 50 100 20 50 100

Normal
32 0.077 0.202 0.807 0.051 0.180 0.681
64 0.070 0.210 0.781 0.056 0.195 0.765
128 0.077 0.237 0.776 0.055 0.184 0.726
256 0.078 0.218 0.780 0.054 0.185 0.700
512 0.071 0.231 0.793 0.055 0.191 0.731
1024 0.083 0.258 0.809 0.055 0.197 0.713
Gamma
32 0.083 0.204 0.701 0.045 0.159 0.679
64 0.078 0.191 0.734 0.057 0.185 0.709
128 0.080 0.223 0.747 0.056 0.199 0.695
256 0.072 0.234 0.783 0.052 0.191 0.729
512 0.081 0.239 0.772 0.054 0.196 0.711
1024 0.078 0.239 0.794 0.052 0.184 0.709
Student t
32 0.078 0.204 0.695 0.050 0.189 0.641
64 0.074 0.213 0.739 0.050 0.197 0.675
128 0.072 0.210 0.768 0.048 0.191 0.717
256 0.069 0.224 0.747 0.052 0.193 0.706
512 0.072 0.238 0.786 0.053 0.196 0.710
1024 0.074 0.224 0.776 0.054 0.190 0.714

Qiu-Chen test has size distortion. From the results of Tables 12 and 14, the
proposed test has a higher power than Qiu-Chen test in our simulation set-
tings. Overall, these numerical results corroborates that our proposed test
outperforms Qiu-Chen test under the setting tr(Σ4)/tr2(Σ2)→ 0.

D.2. Additional simulation results for the test Φb,α. We now
consider the following model (D.5) for size,

Xij =

{
bTj1fi1 + εij , 1 ≤ j ≤ p1,

bTj2fi2 + εij , p1 + 1 ≤ j ≤ p,
(D.5)

and model (D.6) for power analysis,

Xij =

{
bTj1fi1 + ρfi3 + εij , 1 ≤ j ≤ p1,

bTj2fi2 + ρfi3 + εij , p1 + 1 ≤ j ≤ p,
(D.6)

at the nominal level α = 0.01. All elements of factor loadings bj1 and bj2,
j = 1, ..., p, are chosen from Unif(0.5, 2.5). Let fi1, fi2 be 2 × 1 vectors of
common factors, and fi3 be a 1× 1 common factor. Besides, fi1, fi2, fi3 and
εij are independent. Same distributions are considered for i.i.d sequences
fi1,fi2, fi3 and (εij)

p
j=1: (i) standard normal; (ii) centralized Gamma(4,1);
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and (iii) the student t5. The empirical size and power of the tests for H0b

at the nominal level 0.01, reported in Table 15, are estimated from 10000
replications. The resampling implementations are 5000.

Table 15
Empirical sizes and powers for H0b : Σ12 = 0 at 1% significance level, based on 10000
replications with normal, gamma and student-t innovations in Models (D.5) and (D.6)

p size for Φb,α power for Φb,α
n 20 50 100 20 50 100

Normal

32 0.0134 0.0125 0.0106 0.102 0.365 0.714
64 0.0094 0.0105 0.0088 0.120 0.396 0.783
128 0.0100 0.0079 0.0110 0.137 0.382 0.786
256 0.0095 0.0126 0.0110 0.122 0.406 0.797
512 0.0134 0.0110 0.0115 0.147 0.396 0.796
1024 0.0074 0.0103 0.0100 0.134 0.386 0.802

Gamma

32 0.0130 0.0123 0.0103 0.108 0.357 0.740
64 0.0110 0.0097 0.0110 0.095 0.390 0.776
128 0.0139 0.0085 0.0121 0.126 0.389 0.738
256 0.0086 0.0115 0.0079 0.146 0.399 0.766
512 0.0126 0.0103 0.0088 0.121 0.374 0.798
1024 0.0110 0.0116 0.0105 0.121 0.383 0.777

Student t

32 0.0111 0.0119 0.0092 0.127 0.387 0.648
64 0.0128 0.0100 0.0113 0.140 0.362 0.649
128 0.0147 0.0105 0.0095 0.118 0.351 0.712
256 0.0123 0.0108 0.0100 0.131 0.398 0.676
512 0.0095 0.0114 0.0102 0.105 0.381 0.693
1024 0.0136 0.0117 0.0099 0.121 0.390 0.733

In Table 15, the results indicate that our test control the size well when
n = 50, 100. Similarly, we observe notable fluctuation of empirical size when
sample size n = 20. Under the alternative hypothesis, the power rises as the
sample size increases.

APPENDIX E: PROOFS OF MAIN RESULTS IN THE PAPER

Throughout the proof, assume without loss of generality that µ = 0.
Denote by C a constant that is independent of n and p and its value may
change from place to place.

Lemma E.1. Considering {Xi}ni=1 with Assumption 2.1, we have

E|W T
1 W2|2+δ ≤ KW

δ |Γ|2+δ
F ,(E.1)

E|UT
1 U2|2+δ ≤ KU

δ |Ξ|2+δ
F ,(E.2)
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where KW
δ and KU

δ are bounded constants, only depending on δ, ν and
‖ξ11‖4+2δ.

Proof. For the convenience of presentation, we assume d = 2 in As-
sumption 2.1. If d > 2, the argument shown as follows still can be applied
to prove the Lemma with more tedious calculations. Recall E

(
ξ3

11

)
= 0,

Var
(
ξ2

11

)
= ν > 0, Xj =

∑N
l1<l2

aj,l1l2ξ1l1ξ1l2 +
∑N

l1=1 bj,l1ξ1l1 . Then σjk =∑N
l1<l2

aj,l1l2ak,l1l2 +
∑N

l1=1 bj,l1bk,l1 . We rewrite XjXk − σjk as follows,

XjXk − σjk =

 N∑
l1<l2

aj,l1l2ξ1l1ξ1l2 +
N∑
l1=1

bj,l1ξ1l1

 N∑
l1<l2

ak,l1l2ξ1l1ξ1l2 +
N∑
l1=1

bk,l1ξ1l1

− σjk
=

∑
l1<l2<l3<l4

c(j,k),l1l2l3l4,(1)ξ1l1ξ1l2ξ1l3ξ1l4

+
∑

l1<l2<l3

c(j,k),l1l2l3,(1)(ξ
2
1l1 − 1)ξ1l2ξ1l3

+
∑

l1<l2<l3

c(j,k),l1l2l3,(2)ξ1l1(ξ2
1l2 − 1)ξ1l3

+
∑

l1<l2<l3

c(j,k),l1l2l3,(3)ξ1l1ξ1l2(ξ2
1l3 − 1)

+
∑

l1<l2<l3

c(j,k),l1l2l3,(4)ξ1l1ξ1l2ξ1l3

+
∑
l1<l2

c(j,k),l1l2,(1)(ξ
2
1l1 − 1)(ξ2

1l2 − 1)

+
∑
l1<l2

c(j,k),l1l2,(2)(ξ
2
1l1 − 1)ξ1l2

+
∑
l1<l2

c(j,k),l1l2,(3)ξ1l1(ξ2
1l2 − 1)

+
∑
l1<l2

c(j,k),l1l2,(4)ξ1l1ξ1l2

+
∑
l1

c(j,k),l1,(1)(ξ
2
1l1 − 1) +

∑
l1

c(j,k),l1,(2)ξ1l1 ,

(E.3)
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where

c(j,k),l1l2l3l4,(1) = aj,l1l2ak,l3l4 + aj,l1l3ak,l2l4 + aj,l1l4ak,l2l3 + aj,l3l4ak,l1l2 + aj,l2l4ak,l1l3 + aj,l2l3ak,l1l4 ,

c(j,k),l1l2l3,(1) = aj,l1l2ak,l1l3 + aj,l1l3ak,l1l2 ,

c(j,k),l1l2l3,(2) = aj,l1l2ak,l2l3 + aj,l2l3ak,l1l2 ,

c(j,k),l1l2l3,(3) = aj,l1l3ak,l2l3 + aj,l2l3ak,l1l3 ,

c(j,k),l1l2l3,(4) = bj,l1ak,l2l3 + bj,l2ak,l1l3 + bj,l3ak,l1l2 + aj,l1l2bk,l3 + aj,l1l3bk,l2 + ak,l2l3bj,l1 ,

c(j,k),l1l2,(1) = aj,l1l2ak,l1l2 ,

c(j,k),l1l2,(2) = aj,l1l2bk,l1 + bj,l1ak,l1l2 ,

c(j,k),l1l2,(3) = aj,l1l2bk,l2 + bj,l2ak,l1l2 ,

c(j,k),l1l2,(4) =
∑
l3>l2

(aj,l1l3ak,l2l3 + aj,l2l3ak,l1l3) +
∑

l1<l3<l2

(aj,l1l3ak,l3l2 + aj,l3l2ak,l1l3)

+
∑
l3<l1

(aj,l3l1ak,l3l2 + aj,l3l2ak,l3l1) + bj,l1bk,l2 + bj,l2bk,l1 ,

c(j,k),l1,(1) =
∑
l2>l1

aj,l1l2ak,l1l2 +
∑
l2<l1

aj,l2l1ak,l2l1 + bj,l1bk,l1 ,

c(j,k),l1,(2) =
∑
l2>l1

(aj,l1l2bk,l1 + bj,l1ak,l1,l2) +
∑
l2<l1

(aj,l2l1bk,l1 + bj,l1ak,l2l1).

Note that each term in the above equation (E.3) of XjXk − σjk is uncorre-
lated, for instance, E((ξ2

1l1
− 1)(ξ2

1l2
− 1) · (ξ2

1l1
− 1)) = 0. Let η be a vector

expanded by ξ1l1ξ1l2ξ1l3ξ1l4 , (ξ2
1l1
−1)ξ1l2ξ1l3 , ξ1l1(ξ2

1l2
−1)ξ1l3 , ξ1l1ξ1l2(ξ2

1l3
−1),

ξ1l1ξ1l2ξ1l3 , (ξ2
1l1
− 1)(ξ2

1l2
− 1), (ξ2

1l1
− 1)ξ1l2 , ξ1l1(ξ2

1l2
− 1), ξ2

1l1
ξ2

1l2
, (ξ2

1l1
− 1)

and ξ1l1 in alphabetical order. For

α = (l1, l2, l3, l4, n)

with n being 1, 2, 3, 4, define L(j,k),α := c(j,k),α. That is, L(j,k),(l1,l2,l3,l4,1) :=
c(j,k),l1l2l3l4,(1), L(j,k),(l1,l2,l3,·,3) := c(j,k),l1l2l3,(3), L(j,k),(l1,·,·,·,1) := c(j,k),l1,(1),
etc. Then, we can write

XjXk − σjk :=
∑
α

L(j,k),αηα := LT(j,k),·η(E.4)

and

W = Lη.

We also have
Γ = E(WW T ) = LE(ηηT )LT ,
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where E(ηηT ) is a diagonal matrix with its elements being 1, ν or ν2.
Denote D = LTL := (dα,β). Simple calculation shows that

dα,β =
∑

(j,k)∈S1

c(j,k),αc(j,k),β.

Since
|Γ|2F = tr((LE(ηηT )LT ))2 = tr((E(ηηT )LTL))2,

we can show that

|Γ|2F ≤ max{1, ν4}
∑
α,β

d2
α,β.

Denote h = 2 + δ. Let η and η∗ be i.i.d. Followed from (E.3), we have, by
elementary calculations that

‖W T
1 W2‖2h = ‖(Lη)TLη∗‖2h

≤ Cδ‖
∑

(j,k)∈S1

∑
l1<l2<l3<l4

c(j,k),l1l2l3l4,(1)ξ1l1ξ1l2ξ1l3ξ1l4

∑
l5<l6<l7<l8

c(j,k),l5l6l7l8,(1)ξ
∗
1l5ξ
∗
1l6ξ
∗
1l7ξ
∗
1l8‖

2
h

+Cδ‖
∑

(j,k)∈S1

∑
l1<l2<l3

c(j,k),l1l2l3,(1)(ξ
2
1l1 − 1)ξ1l2ξ1l3

∑
l4<l5<l6

c(j,k),l4l5l6,(1)(ξ
2
1l4 − 1)ξ1l5ξ1l6‖2h

+ · · ·
+Cδ‖

∑
(j,k)∈S1

∑
l1<l2<l3<l4

c(j,k),l1l2l3l4,(1)ξ1l1ξ1l2ξ1l3ξ1l4

∑
l5<l6<l7

c(j,k),l5l6l7,(1)(ξ
2
1l5 − 1)ξ1l6ξ1l7‖2h

+ · · ·
:= Cδ(R1 +R2 + · · ·+R55),

for some bounded positive constant Cδ. Applying Lemma F.1 (Burkholder’s
inequality) to each step, we have

R1 ≤ (h− 1)
∑
l4>l3

‖ξ1l4‖2h‖
∑

l1<l2<l3

∑
l5<l6<l7<l8

d(l1,l2,l3,l4,1),(l5,l6,l7,l8,1)ξ1l1ξ1l2ξ1l3ξ
∗
1l5ξ
∗
1l6ξ
∗
1l7ξ
∗
1l8‖

2
h

≤ (h− 1)2
∑

l4>l3>l2

‖ξ1l4‖2h‖ξ1l3‖2h‖
∑
l1<l2

∑
l5<l6<l7<l8

d(l1,l2,l3,l4,1),(l5,l6,l7,l8,1)ξ1l1ξ1l2ξ
∗
1l5ξ
∗
1l6ξ
∗
1l7ξ
∗
1l8‖

2
h

...

≤ (h− 1)8
∑

l1<l2<l3<l4

∑
l5<l6<l7<l8

d2
(l1,l2,l3,l4,1),(l5,l6,l7,l8,1)‖ξ11‖16

h

Denote
K̄δ = (max{(h− 1)2‖ξ11‖4h, (h− 1)‖ξ2

11 − 1‖2h, 1})4.
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Adopting similar arguments to R2, ..., R55, we can obtain

‖W T
1 W2‖2h ≤ CδK̄δ

∑
α,β

d2
α,β.

Then (E.1) follows by setting

KW
δ :=

(
CδK̄δ

min{1, ν4}

)(2+δ)/2

.

Clearly, KW
δ <∞.

Following the same arguments, we can show (E.2).

Proof of Theorem 2.1. For the convenience of presentation, we as-
sume d = 2 in Assumption 2.1. If d > 2, the argument shown as follows still
can be applied to prove the theorem with more tedious calculations. Denote

T̃n =

p∑
j 6=k

 1

n(n− 1)

∗∑
i1,i2

Xi1jXi1kXi2jXi2k + σ2
jk,0 −

2

n
σjk,0

n∑
i1

Xi1jXi1k

 .

Write T̂n − T̃n = −R1 +R2, where

R1 =
2

n(n− 1)(n− 2)

p∑
j 6=k

∗∑
i1,i2,i3

Xi1j(Xi2jXi2k − σjk,0)Xi3k,

R2 =
1

n(n− 1)(n− 2)(n− 3)

p∑
j 6=k

∗∑
i1,i2,i3,i4

Xi1jXi2jXi3kXi4k.

Note that ER1 = ER2 = 0. By the independence between Xi, we have

ER2
2 =

∑
j 6=k
m 6=q

∗∑
i1,i2,i3,i4

∗∑
i5,i6,i7,i8

E(Xi1jXi2jXi3kXi4kXi5mXi6mXi7qXi8q)

n2(n− 1)2(n− 3)2(n− 4)2

=
8

n(n− 1)(n− 3)(n− 4)

∑
j 6=k

∑
m 6=q

(σ2
jmσ

2
kq + 2σjmσjqσkqσkm)

≤ 8

n(n− 1)(n− 3)(n− 4)
· C|Γ|2F .

Under H0a, we can decompose ER2
1 as

ER2
1 =

4

n(n− 1)(n− 2)

6∑
i=1

R1,i,
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where

R1,1 =

p∑
j 6=k

p∑
m 6=q

σjmσkq (E(XijXikXimXiq)− σjkσmq) ,

R1,2 =

p∑
j 6=k

p∑
m 6=q

σjqσkm (E(XijXikXimXiq)− σjkσmq) ,

R1,3 =

p∑
j 6=k

p∑
m 6=q

σjmE(XijXikXiq)E(XikXimXiq),

R1,4 =

p∑
j 6=k

p∑
m 6=q

σjqE(XijXikXim)E(XikXimXiq),

R1,5 =

p∑
j 6=k

p∑
m6=q

σkmE(XijXimXiq)E(XijXikXiq),

R1,6 =

p∑
j 6=k

p∑
m6=q

σkqE(XijXikXim)E(XijXimXiq).

Since E
(
ξ3

11

)
= 0, elementary calculation shows that R1,3 = R1,4 = R1,5 =

R1,6 = 0. By (2.7),

R1,1 +R1,2 =

p∑
j 6=k

p∑
m6=q

(E(XijXikXimXiq)− σjkσmq) (σjmσkq + σjqσkm)

≤

√√√√ p∑
j 6=k

p∑
m6=q

(σjmσkq + σjqσkm)2

√√√√ p∑
j 6=k

p∑
m6=q

(E(XijXikXimXiq)− σjkσmq)2

=

√√√√2

p∑
j 6=k

p∑
m 6=q

(
σ2
jmσ

2
kq + σjmσjqσkmσkq

)√√√√ p∑
j 6=k

p∑
m6=q

(E(XijXik − σjk)(XimXiq − σmq))2

≤ Cν,1|Γ|F ·

√√√√ p∑
j 6=k

p∑
m6=q

(E(XijXik − σjk)(XimXiq − σmq))2.

By (E.4), XijXik−σjk = LT(j,k),·η. Recall in the proof of Lemma E.1, E(ηηT )

is a diagonal matrix with its elements being 1, ν, ν2, and D = LTL. Then,
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we have

p∑
j 6=k

p∑
m 6=q

(E(XijXik − σjk)(XimXiq − σmq))2 =

p∑
j 6=k

p∑
m6=q

(
LT(j,k),·E(ηηT )L(m,q),·

)2

≤ max{1, ν4}
p∑
j 6=k

p∑
m 6=q

tr
(
L(m,q),·L

T
(j,k),·

)2

≤ max{1, ν4}
p∑
j 6=k

p∑
m 6=q

tr
(
LT(j,k),·L(m,q),·

)2

≤ max{1, ν4}tr(D2)

≤ Cν,2|Γ|2F .

Thus, we can obtain,

R1,1 +R1,2 =

p∑
j 6=k

p∑
m6=q

(E(XijXikXimXiq)− σjkσmq) (σjmσkq + σjqσkm)

≤ Cν,3|Γ|2F .(E.5)

So ER2
1 ≤ C(n(n − 1)(n − 2))−1|Γ|2F . Hence, R1/|Γ|F = OP(n−3/2) and

R2/|Γ|F = OP(n−2).
Under Assumption 2.1, by Lemma E.1, we have (E.1). Adopting Lemma F.4
in the Supplementary Material, under H0a, we obtain
(E.6)

sup
t

∣∣∣∣∣∣P
(
nT̃n
|Γ|F

≤ t

)
− P

p(p−1)∑
d=1

λd
|Γ|F

(ηd − 1) ≤ t

∣∣∣∣∣∣ = O(n−δ/(10+4δ)).

Then Theorem 2.1 follows by (E.6), triangle inequality and Lemma F.2 in
the Supplementary Material.

Proof of Corollary 2.1. When
∑p

j 6=k(σjk − σjk,0)2/|Γ|F = O(1), it
can be proved using similar arguments in the proof of Theorem 2.1 and
Lemma F.3.

When
∑p

j 6=k(σjk−σjk,0)2/|Γ|F →∞, similar to the proof of Theorem 2.1,
we can show

nT̂n
|Γ|F

=
nT̃n
|Γ|F

(1 + oP(1)),
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where

T̃n =
1

n(n− 1)

∗∑
i1,i2

p∑
j 6=k

(Xi1jXi1k − σjk)(Xi2jXi2k − σjk)

+

p∑
j 6=k

(σjk,0 − σjk)2 − 2

n

n∑
i1

p∑
j 6=k

(σjk,0 − σjk)(Xi1jXi1k − σjk).

By Theorem 2.1, since
∑p

j 6=k(σjk − σjk,0)2/|Γ|F →∞, it is clear that

nT̃n
|Γ|F

→∞ in probability.

Corollary 2.1 then follows.

Before proving Corollary 2.2, we need the following Lemma.

Lemma E.2. Assume that {Xi}ni=1 follows a linear process, that is, un-
der Assumption 2.1 with aj,l1l2...li = 0 for all 1 ≤ l1 < l2 < ... < li ≤ N, 2 ≤
i ≤ d, 1 ≤ j ≤ p. Then, we have

|Γ|2F ≥ min

{
ν2

2
, 2

} ∑
(j,k)∈S1

∑
(m,q)∈S1

(
σ2
jmσ

2
kq + σjmσjqσkmσkq

)
,

(E.7)

|Γ|2F ≤ max

{
ν2

2
,
(ν − 2)2

2
+ 2

} ∑
(j,k)∈S1

∑
(m,q)∈S1

(
σ2
jmσ

2
kq + σjmσjqσkmσkq

)
.

(E.8)

Note that by Cauchy-Schwarz inequality∑
(j,k)∈S1

∑
(m,q)∈S1

(σ2
jmσ

2
kq + σjmσjqσkmσkq) ≤ 2tr2(Σ2).

Since
∑

(j,k)∈S1
∑

(m,q)∈S1(σ2
jmσ

2
kq + σjmσjqσkmσkq) ≥ Ktr2(Σ2) for some

constant K > 0, Lemma E.2 shows that |Γ|2F � |Σ|4F .

Proof of Lemma E.2. Let B = {(i, l), 1 ≤ i ≤ l ≤ N} and ω = (ωβ)β∈B ∈
RN(N+1)/2, where ωβ = ξ1iξ1l for β = (i, l), that is

ω = (%1, ξ11ξ12, . . . , ξ11ξ1N , %2, ξ12ξ13, . . . , %N )T , where %i = ξ2
1i − 1.
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Let VW be the covariance matrix of ω. Then VW = diag({vβ,β}β∈B), where
for β = (i, l), vβ,β = Var(ξ2

1i) = ν if l = i and vβ,β = 1 if l 6= i. Also define
G = (gα,β)α∈I,β∈B ∈ Rp(p−1)×[N(N+1)/2], where for α = (j, k), β = (i, l),

gα,β =

{
bjibki, if l = i;

bjibkl + bjlbki, if l > i.

Note that (Xj − µj)(Xk − µk) = gTαω, where gTα is the α’th row of G. Then
W = Gω and

E
(
WW T

)
=
(
γα,α′

)
α,α′∈I ,

where for α = (j, k), α′ = (m, q),

γα,α′ = Cov (XjXk, XmXq) = gTαVWgα′

= ν
∑
i

bjibkibmibqi +
∑
i<l

(bjibkl + bjlbki) (bqibml + bmibql)

= (ν − 2)
∑
i

bjibkibmibqi + σjmσkq + σjqσkm.

Note that Σ = BBT . Let

L0 =
∑
j 6=k
m 6=q

(σjmσkq + σjqσkm)2 ,

L1 =
∑
j 6=k
m 6=q

(∑
i

bjibkibmibqi

)2

=
∑
j 6=k
m 6=q

∑
i,l

bjibkibmibqibjlbklbmlbql,

L2 =
∑
j 6=k
m 6=q

(σjmσkq + σjqσkm)
∑
i

bjibkibmibqi

=
∑
j 6=k
m 6=q

∑
i,l,l′

bjibkibmibqi
(
bjlbmlbkl′bql′ + bjlbqlbkl′bml′

)
.

Since (
∑

j 6=k bjibjlbkibkl′ +
∑

j 6=k bjibjl′bkibkl)
2 ≥ 0, we can show that L2 ≥
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2L1. Thus

|Γ|2F =
∑
α,α′∈I

γ2
α,α′

=
∑
j 6=k
m6=q

[
(ν − 2)

∑
i

bjibkibmibqi + σjmσkq + σjqσkm
]2

=
∑
j 6=k
m6=q

σ2
jqσ

2
km + σ2

jmσ
2
kq + 2σjqσqkσkmσmj + (ν − 2)2

(∑
i

bjibkibmibqi

)2

+2(ν − 2) (σjmσkq + σjqσkm)
∑
i

bjibkibmibqi

)
= L1(ν − 2)2 + 2L2(ν − 2) + L0.

Clearly |Γ|2F ≥ L0 if ν ≥ 2. It is easy to see that 4L1 − 4L2 + L0 ≥ 0, so
L0 ≥ 4L2 − 4L1 ≥ 4L1. If 0 < ν < 2, then the quantity

|Γ|2F −
L0ν

2

4
=

(
L1 −

L0

4

)
ν2 + 2(L2 − 2L1)ν + L0 + 4L1 − 4L2

is larger than the minimum of its value at ν = 0 and ν = 2, which are both
nonnegative. Therefore,

|Γ|2F ≥ ν2L0/4 =
ν2

2

∑
j 6=k
m 6=q

(
σ2
jmσ

2
kq + σjmσjqσkmσkq

)

for any ν ∈ (0, 2).
Similarly, we can show that

|Γ|2F ≤ max

{
ν2

2
,
(ν − 2)2

2
+ 2

}∑
j 6=k
m 6=q

(
σ2
jmσ

2
kq + σjmσjqσkmσkq

)
.

Proof of Corollary 2.2. Note that ρΣ = o(1) is equivalent to tr(Σ3) =
o(tr3/2(Σ2)). By the Lindeberg Central Limit Theorem, the necessary and
sufficient condition for

p(p−1)∑
d=1

λd
|Γ|F

(ηd − 1)
d−→ N(0, 2)
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is λ1/|Γ|F → 0. Since
∑

(j,k)∈S1
∑

(m,q)∈S1(σ2
jmσ

2
kq+σjmσjqσkmσkq) ≥ Ktr2(Σ2)

for some constant K > 0, by Lemma E.2, |Γ|2F � |Σ|4F . Corollary 2.2 then
follows.

Proof of Theorem 2.2. We first prove the theorem under the null hy-
pothesis H0a. Under the alternative hypothesis, a similar argument can be
implied. For the convenience of presentation, we assume d = 2 in Assump-
tion 2.1. If d > 2, the argument shown as follows still can be applied to
prove the theorem with more tedious calculations.
Denote F (t) = P(nT̂n ≤ t). To simplify the notion, write JBl := JBl(S1,Σ0),
JBcl := JBcl (S1,Σ0), CBl,Bcl := CBl,Bcl (S1,Σ0). For sets Bl, Bl′ ∈ {1, 2, ..., n}
with |Bl| = |Bl′ | = m = n/2, denote

VBl =
1

m

p∑
j 6=k

 1

m− 1

∗∑
i1,i2∈Bl

(Xi1jXi1k − σjk,0)(Xi2jXi2k − σjk,0)

+
1

m− 1

∗∑
i1,i2∈Bcl

(Xi1jXi1k − σjk,0)(Xi2jXi2k − σjk,0)

− 2

m

∑
i1∈Bl,i2∈Bcl

(Xi1jXi1k − σjk,0)(Xi2jXi2k − σjk,0)

 ,

V o
Bl

=
1

m

 1

m− 1

∗∑
i1,i2∈Bl

Y T
i1 Yi2 +

1

m− 1

∗∑
i1,i2∈Bcl

Y T
i1 Yi2 −

2

m

∑
i1∈Bl

∑
i2∈Bcl

Y T
i1 Yi2

 ,

where Yi i.i.d N(0,Γ). Similarly, define VBl′ and V o
Bl′

. By elementary manip-
ulations,

m(JBl + JBcl − 2CBl,Bcl )

2|Γ|F
=
mVBl
2|Γ|F

+
mRl
2|Γ|F

,

where we decompose Rl as

Rl = −2Rl,1 − 2Rl,2 +Rl,3 +Rl,4 + 2Rl,5 + 2Rl,6 − 2Rl,7
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and

Rl,1 =
1

m(m− 1)(m− 2)

∗∑
i1,i2,i3∈Bl

p∑
j 6=k

Xi1j(Xi2jXi2k − σjk)Xi3k,

Rl,2 =
1

m(m− 1)(m− 2)

∗∑
i1,i2,i3∈Bcl

p∑
j 6=k

Xi1j(Xi2jXi2k − σjk)Xi3k,

Rl,3 =
1

m(m− 1)(m− 2)(m− 3)

∗∑
i1,i2,i3,i4∈Bl

p∑
j 6=k

Xi1jXi2jXi3kXi4k,

Rl,4 =
1

m(m− 1)(m− 2)(m− 3)

∗∑
i1,i2,i3,i4∈Bcl

p∑
j 6=k

Xi1jXi2jXi3kXi4k,

Rl,5 =
1

m2(m− 1)

∗∑
i1,i2∈Bl

∑
i3∈Bcl

p∑
j 6=k

Xi1jXi2k(Xi3jXi3k − σjk),

Rl,6 =
1

m2(m− 1)

∗∑
i1,i2∈Bcl

∑
i3∈Bl

p∑
j 6=k

Xi1jXi2k(Xi3jXi3k − σjk),

Rl,7 =
1

m2(m− 1)2

∗∑
i1,i2∈Bl

∗∑
i3,i4∈Bcl

p∑
j 6=k

Xi1jXi2kXi3jXi4k.

Similar to R1 and R2 in the proof of Theorem 2.1, we can obtain Rl,i/|Γ|F =
OP(m−3/2) for i = 1, 2 and Rl,i/|Γ|F = OP(m−2) for i = 3, 4. Applying
Lemma E.1, under the null H0a, employing (E.5),

ER2
l,5 =

∑
j 6=k

∑
m 6=q

1

m(m− 1)
(σjmσkq + σjqσkm) · 1

m
(E(XijXikXimXiq)− σjkσkq)

≤ 1

m2(m− 1)
· Cν,1|Γ|2F .

ER2
l,7 =

∑
j 6=k

∑
m 6=q

1

m2(m− 1)2
(σjmσkq + σjqσkm)2 ≤ 1

2Cν
· 1

m2(m− 1)2
|Γ|2F .

So Rl,i/|Γ|F = OP(m−3/2) for i = 5, 6, Rl,7/|Γ|F = OP(m−2).
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For any ε ≥ 0, we know by the triangle inequality that

P

(
mVBl
2|Γ|F

≤ t− ε
)
− P

(
|mRl|
2|Γ|F

≥ ε
)

(E.9)

≤ P

(
m(JBl + JBcl − 2CBl,Bcl )

2|Γ|F
≤ t
)

≤ P

(
mVBl
2|Γ|F

≤ t+ ε

)
+ P

(
|mRl|
2|Γ|F

≥ ε
)
.

By Lemma F.2 in the Supplementary Material, we obtain

P

(
mVBl
2|Γ|F

≤ t
)
−
√
ε ·
√

8π −K · 1

mε2

≤ P

(
m(JBl + JBcl − 2CBl,Bcl )

2|Γ|F
≤ t
)

≤ P

(
mVBl
2|Γ|F

≤ t
)

+
√
ε ·
√

8π +K · 1

mε2
.

Taking ε = n−2/5,
(E.10)

sup
t

∣∣∣∣P(m(JBl + JBcl − 2CBl,Bcl )

2|Γ|F
≤ t
)
− P

(
mVBl
2|Γ|F

≤ t
)∣∣∣∣ = O(n−1/5).

Adopting Lemma F.4, Corollary F.3 in the Supplementary Material and
(E.10), for all Bl, Bl′ ∈ B, we have

sup
t

∣∣∣∣∣∣P
(m

2
(JBl + JBcl − 2CBl,Bcl ) ≤ t

)
− P

 1

n− 1

∗∑
i1,i2

Y T
i1 Yi2 ≤ t

∣∣∣∣∣∣ = O(n−δ/(10+4δ)),

(E.11)

sup
t

∣∣∣∣∣∣P
(
nT̂n ≤ t

)
− P

 1

n− 1

∗∑
i1,i2

Y T
i1 Yi2 ≤ t

∣∣∣∣∣∣ = O(n−δ/(10+4δ)).

(E.12)

Consequently,

sup
t

∣∣∣P(m
2

(JBl + JBcl − 2CBl,Bcl ) ≤ t
)
− F (t)

∣∣∣ = O(n−δ/(10+4δ)).

Let B be the class of all the
(
n
m

)
subsets of size m of {1, 2, ..., n} and

F̃ (t) =
1(
n
m

) ∑
Bl∈B

1m(1−m/n)(JBl+JBcl
−2CBl,B

c
l
)≤t.
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For Bl, Bl′ ∈ B, let I1 = Bl ∩Bl′ , I2 = Bl ∩Bc
l′ , I3 = Bc

l ∩Bl′ , I4 = Bc
l ∩Bc

l′

and

d(Bl, Bl′) = max
{∣∣∣|I1| −

n

4

∣∣∣ , ∣∣∣|I2| −
n

4

∣∣∣ , ∣∣∣|I3| −
n

4

∣∣∣ , ∣∣∣|I4| −
n

4

∣∣∣} .
Referring to (E.17) and (E.18), the proportion of pairs (Bl, Bl′) such that
d(Bl, Bl′) > n1/2 log n is very small. Now we shall show that for Bl, Bl′ ∈ B
with d(Bl, Bl′) ≤ n1/2 log n,

sup
t

∣∣∣P(m
2

(JBl + JBcl − 2CBl,Bcl ) ≤ t,
m

2
(JBl′ + JBc

l′
− 2CBl′ ,Bcl′ ) ≤ t

)
−

(E.13)

P
(m

2
(JBl + JBcl − 2CBl,Bcl ) ≤ t

)
P
(m

2
(JBl′ + JBc

l′
− 2CBl′ ,Bcl′ ) ≤ t

)∣∣∣
= O(n−δ/(10+4δ)).

For convenience, denote ȲBl = m−1
∑

i∈Bl Yi and ȲBcl , ȲBl′ , ȲB
c
l′

are sim-

ilarly defined. Let ϑ = (4|I1| − n)/n. Then |I1| = |I4| = n/4 + nϑ/4,
|I2| = |I3| = n/4− nϑ/4 and ϑ = 4d(Bl, Bl′)/n ≤ 4n−1/2 log n. Define

ỸBl′ = ȲBl′ − ȲBcl′ − ϑȲBl + ϑȲBcl ,

Ṽ o
Bl

=
m
2 (ȲBl − ȲBcl )

T (ȲBl − ȲBcl )− tr(Γ)

|Γ|F
,

Ṽ o
Bl′

=

m
2 (ȲBl′ − ȲBcl′ )

T (ȲBl′ − ȲBcl′ )− tr(Γ)

|Γ|F
,

V̆ o
Bl′

=

m
2 Ỹ

T
Bl′
ỸBl′ − (1 + ϑ2)tr(Γ)

|Γ|F
.

A simple calculation shows that

Cov(ȲBl − ȲBcl , ỸBl′ ) = 0,

which due to Gaussianity, implies that ỸBl′ is independent of ȲBl − ȲBcl .
Then for any ε > 0, we have

P

(
mV o

Bl

2|Γ|F
≤ t,

mV o
Bl′

2|Γ|F
≤ t
)

= P
(
Ṽ o
Bl
≤ t, Ṽ o

Bl′
≤ t
)

≤ P
(
Ṽ o
Bl
≤ t, V̆ o

Bl′
≤ t+ ε

)
+ P

(
|Ṽ o
Bl′
− V̆ o

Bl′
| > ε

)
= P

(
Ṽ o
Bl
≤ t
)
P
(
V̆ o
Bl′
≤ t+ ε

)
+ P

(
|Ṽ o
Bl′
− V̆ o

Bl′
| > ε

)
≤ P

(
Ṽ o
Bl
≤ t
)
P
(
Ṽ o
Bl′
≤ t+ 2ε

)
+ 2P

(
|Ṽ o
Bl′
− V̆ o

Bl′
| > ε

)
.(E.14)
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For the second term,

Ṽ o
Bl′
− V̆ o

Bl′
=
mϑ(ȲBl − ȲBcl )

T (ȲBl′ − ȲBcl′ )
|Γ|F

−
m
2 ϑ

2(ȲBl − ȲBcl )
T (ȲBl − ȲBcl )− ϑ

2tr(Γ)

|Γ|F
.

Observe that

mϑ(ȲBl − ȲBcl )
T (ȲBl′ − ȲBcl′ )

|Γ|F
= ϑOP(1) = OP(

log n√
n

),

m
2 ϑ

2(ȲBl − ȲBcl )
T (ȲBl − ȲBcl )− ϑ

2tr(Γ)

|Γ|F
= ϑ2OP(1) = OP(

(log n)2

n
).

Employing Lemma F.6 in the Supplementary Material and (E.14), taking
ε = n−2/5, a similar argument implies that

sup
t

∣∣∣∣P(mV o
Bl

2|Γ|F
≤ t,

mV o
Bl′

2|Γ|F
≤ t
)
− P

(
mV o

Bl

2|Γ|F
≤ t
)
P

(
mV o

Bl′

2|Γ|F
≤ t
)∣∣∣∣(E.15)

= O(n−1/5).

Recall Lemma F.6 shows that for any Bl, Bl′ ∈ B, if d(Bl, Bl′) ≤ n1/2 log n,

sup
t

∣∣∣P(m
2
VBl ≤ t,

m

2
VBl′ ≤ t

)
− P

(m
2
V o
Bl
≤ t, m

2
V o
Bl′
≤ t
)∣∣∣ = O(n−δ/(10+4δ)).

Thus, applying Lemma F.6, (E.10) and (E.15), we can obtain

sup
t

∣∣∣P(m
2

(JBl + JBcl − 2CBl,Bcl ) ≤ t,
m

2
(JBl′ + JBc

l′
− 2CBl′ ,Bcl′ ) ≤ t

)
−

P
(m

2
(JBl + JBcl − 2CBl,Bcl ) ≤ t

)
P
(m

2
(JBl′ + JBc

l′
− 2CBl′ ,Bcl′ ) ≤ t

)∣∣∣
= sup

t

∣∣∣P(m
2
VBl ≤ t,

m

2
VBl′ ≤ t

)
− P2

(m
2
VBl ≤ t

)∣∣∣+O(n−1/5)

≤ sup
t

∣∣∣P(m
2
VBl ≤ t,

m

2
VBl′ ≤ t

)
− P

(m
2
V o
Bl
≤ t, m

2
V o
Bl′
≤ t
)∣∣∣

+ sup
t

∣∣∣P2
(m

2
VBl ≤ t

)
− P2

(m
2
V o
Bl
≤ t
)∣∣∣+O(n−1/5)

= O(n−δ/(10+4δ)).

(E.16)

Let B0 = {1, 2, ...,m}. Write HBl = 1m
2

(JBl (S1)+JBc
l
(S1)−2CBl,B

c
l
(S1))≤t. Then

E|F̃ (t)− F (t)|2 =
1(
n
m

)2 ∑
Bl,Bl′∈B

Cov
(
HBl , HBl′

)
=: I1 + I2,
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where I1 (resp. I2) represents the sum with pairs Bl, Bl′ with d(Bl, Bl′) ≤
n1/2 log n (resp. d(Bl, Bl′) > n1/2 log n). Note that

I2 =
1(
n
m

) ∑
B∈B,d(B0,B)>n1/2 logn

Cov(HBl , HBl′ )

≤ 1(
n
m

)#{B ∈ B, d(B0, B) > n1/2 log n}

= P
(
d(B0,J (π1, π2..., πn)) > n1/2 log n|π1 + ...+ πn = m

)
,(E.17)

where π1, ..., πn are i.i.d. Bernoulli(1/2) with values 0 or 1, and J (π1, π2..., πn) ⊂
{1, . . . , n} is an index set such that, if πi = 1, then i ∈ {1, ..., n} is chosen.
By the Hoeffding inequality,

I2 ≤ P
(
|π1 + ...+ πm −m/2| > n1/2 log n

)
/P (π1 + ...+ πn = m)

≤
2 exp

(
−4 log2(n)

)(
n
m

)
· 1

2n
≤ 2
√
n exp

(
−4 log2(n)

)
=: ρn(E.18)

By (E.16), I1 ≤ (1− ρn) ·O(n−δ/(10+4δ)) = O(n−δ/(10+4δ)). Thus, we obtain

sup
t

E|F̃ (t)− F (t)|2 = O(n−δ/(10+4δ)).

Remark E.1. By the Glivenko-Cantelli argument, Lemma F.2 and Lem-
ma F.4, we also have the uniform version

sup
t
|F̃ (t)− F (t)| P→ 0.

Proof of Theorem 3.1. Under the assumption 3.1, applying Taylor’s
expansion, similar to Zhong et al. (2017), we can show T̂n(θ̂) = T̂n(θ)(1 +
oP(1)).
By carrying out the same route as it in the proof of Theorem 2.1, we have

T̂n(θ) =

 1

n(n− 1)

n∑
i 6=l
W T

i Wl −
1

n2

n∑
i,l

W T
i ΥWl

 (1 + oP(1)).

Following the same arguments as those in the proofs of Lemma E.1, it can
be shown that KΥ

δ defined as follows is bounded,

(KΥ
δ )2+δ := E

∣∣∣∣W T
1 (I −Υ)W2

|Γ−ΥΓ|F

∣∣∣∣2+δ

.



62 Y. HAN, W.B. WU

Then Theorem 3.1(i) follows by employing Lemma F.5 in the Supplementary
Material. Since

E

 1

n(n− 1)

n∑
i 6=l
W T

i Wl −
1

n2

n∑
i 6=l
W T

i ΥWl

2 =

∣∣∣∣Γ− n− 1

n
ΥΓ

∣∣∣∣2
F

and
√
n/κ0 → 0, Theorem 3.1(ii) follows by Lindeberg Central Limit Theo-

rem.

Proofs of Theorem 3.2. It can be carried out following the same routes
as those in the proofs of Theorems 2.2 and 3.1.

Proof of Theorem A.1. For the convenience of presentation, we as-
sume d = 2 in Assumption 2.1. If d > 2, the argument shown as follows still
can be applied to prove the Lemma with more tedious calculations. Denote

Q̃n =

p1∑
j=1

p1+p2∑
k=p1+1

 1

n(n− 1)

∗∑
i1,i2

Xi1jXi1kXi2jXi2k + σ2
jk,0 −

2

n
σjk,0

n∑
i1

Xi1jXi1k

 .

Rewrite Q̂n − Q̃n = −R1 +R2, where

R1 =
2

n(n− 1)(n− 2)

p1∑
j=1

p1+p2∑
k=p1+1

∗∑
i1,i2,i3

Xi1j(Xi2jXi2k − σjk,0)Xi3k,

R2 =
1

n(n− 1)(n− 2)(n− 3)

p1∑
j=1

p1+p2∑
k=p1+1

∗∑
i1,i2,i3,i4

Xi1jXi2jXi3kXi4k.

Note that Eξ3
11 = 0. Recall that Xi = Bξi, using the same notation in the

proof of Lemma E.1, it is straightforward to show that

E(XijXikXimXiq)− σjkσmq = E
(
LT(j,k),·η · L

T
(m,q),·η

)
,

E(XijXikXim) = 0.

To this end, under H0a,

ER2
1 =

4

n(n− 1)(n− 2)

p1∑
j,m=1

p1+p2∑
k,q=p1+1

(σjmσkq + σjqσkm)
(
LT(j,k),· · E(ηηT ) · L(m,q),·

)
.

Using similar arguments in the proof of (E.5),

ER2
1 ≤

1

n(n− 1)(n− 2)
· C|Ξ|2F .
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By carrying out similar procedures, by the Cauchy-Schwarz inequality, we
can get

ER2
2 =

4

n(n− 1)(n− 3)(n− 4)

(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21) + 4tr(Σ11Σ12Σ22Σ21)

)
≤ 1

n(n− 1)(n− 3)(n− 4)
· C
(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21)

)
.

Hence, R1/|Ξ|F = OP(n−3/2) and R2/|Ξ|F = OP(n−2).
Adopting Lemma E.1 and F.4, under H0b, we obtain
(E.19)

sup
t

∣∣∣∣∣P
(
nQ̃n
|Ξ|F

≤ t

)
− P

(
p1p2∑
d=1

θd
|Ξ|F

(ηd − 1) ≤ t

)∣∣∣∣∣ = O(n−δ/(10+4δ)).

Then Theorem A.1 follows by (E.19), triangle inequality and Lemma F.2.

To prove Corollary A.2, we need the following Lemma.

Lemma E.3. Assume that {Xi}ni=1 follows a linear process, that is, un-
der Assumption 2.1 with aj,l1l2...li = 0 for all 1 ≤ l1 < l2 < ... < li ≤ N, 2 ≤
i ≤ d, 1 ≤ j ≤ p. Then, we have

|Ξ|2F ≥ min

{
ν2

4
, 1

}(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21))

)
,(E.20)

|Ξ|2F ≤ max

{
ν2

2
,
(ν − 2)2

2
+ 2

}(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21))

)
.(E.21)

Proof of Lemma E.3. Similar to Lemma E.2, define α = (j, k), α′ =
(m, q) for 1 ≤ j,m ≤ p1, p1 + 1 ≤ k, q ≤ p1 + p2 = p, we obtain

γα,α′ = Cov (XjXk, XmXq)

= (ν − 2)
∑
i

bjibkibmibqi + σjmσkq + σjqσkm,

|Ξ|2F = L1(ν − 2)2 + 2L2(ν − 2) + L0.
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Let C = BT
(1)B(1) and D = BT

(2)B(2), then

L0 =
∑

1≤j,m≤p1

∑
p1+1≤k,q≤p1+p2

(σjmσkq + σjqσkm)2

= tr(Σ2
11)tr(Σ2

22) + (tr(Σ12Σ21))2 + 2tr(Σ11Σ12Σ22Σ21),

L1 =
∑

1≤j,m≤p1

∑
p1+1≤k,q≤p1+p2

(∑
i

ajiakiamiaqi

)2

=
∑
il

c2
ild

2
il,

L2 =
∑

1≤j,m≤p1

∑
p1+1≤k,q≤p1+p2

(σjmσkq + σjqσkm)
∑
i

bjibkibmibqi

=
∑
i

(∑
l

cildil

)2

+
∑
i

(∑
l

c2
il

∑
l

d2
il

)
.

Note that tr(Σ11Σ12Σ22Σ21) = tr(BT
(1)B(1)B

T
(2)B(2))

2 > 0.

Since (cildil′ + cil′dil)
2 ≥ 0,

∑
i

∑
l 6=l′ cildilcil′dil′ +

∑
i

∑
l 6=l′ c

2
il′d

2
il ≥ 0. We

obtain L2 ≥ 2L1. Thus, by carrying out the same route as it in Lemma E.2,
we can show

|Ξ|2F ≥ min

{
ν2

4
, 1

}(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21) + 2tr(Σ11Σ12Σ22Σ21)

)
> min

{
ν2

4
, 1

}(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21))

)
.

Similarly,

|Ξ|2F ≤ max

{
ν2

2
,
(ν − 2)2

2
+ 2

}(
tr(Σ2

11)tr(Σ2
22) + tr2(Σ12Σ21))

)
.

Proof of Theorem A.2. It can be carried out following the same routes
as those in the proofs of Theorems 2.2 and A.1.

Proof of Theorem 4.1. Note that Ω̂Σ̂ = I and ΩΣ = I. Then,

ΩΣ + (Ω̂− Ω)Σ + Ω(Σ̂− Σ) + (Ω̂− Ω)(Σ̂− Σ) = I.

It follows that

Ω̂− Ω = −Ω(Σ̂− Σ)Ω− (Ω̂− Ω)(Σ̂− Σ)Ω.
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Let Ωj· be the j−th row of Ω and Ω·k be the k−th column of Ω. Then,

ω̂jk − ωjk = −Ωj·(Σ̂− Σ)Ω·k − (Ω̂j· − Ωj·)(Σ̂− Σ)Ω·k.

Basic calculation shows that

R :=
∑
j,k∈S

(ω̂jk − ωjk)2 =
∑
j,k∈S

(Ωj·(Σ̂− Σ)Ω·k)
2 +

∑
j,k∈S

((Ω̂j· − Ωj·)(Σ̂− Σ)Ω·k)
2

+2
∑
j,k∈S

Ωj·(Σ̂− Σ)Ω·k(Ω̂j· − Ωj·)(Σ̂− Σ)Ω·k

:= R1 +R2 + 2R3.

By the Cauchy-Schwarz inequality, |R3| ≤
√
R1R2, then we have

|
√
R−

√
R1| ≤

√
R2.

For the index set S ⊂ {(j, k) : 1 ≤ j, k ≤ p}, we write

R1 =
∑

(j,k)∈S

− p∑
m,q=1

ωjmωkq(σ̂mq − σmq)

2

:=
1

n2

n∑
i,l=1

WiΛWl,

where Λ = (Λ(m1,q1),(m2,q2))1≤m1,m2,q1,q2≤p with

Λ(m1,q1),(m2,q2) =
∑
j,k∈S

ωjm1ωjm2ωkq1ωkq2 .

By Assumption 4.2, for 1 ≤ j ≤ p, 0 < K−1
0 ≤ |Ωj·|2 ≤ K0 and λmax(Σ) ≤

K0. Let ‖A‖2 be the spectral norm of matrix A. Employing Proposition 2.1
in Vershynin (2012), we have ‖Σ̂ − Σ‖2 = OP(

√
p/n) under Assumption

4.1. Since p/n → 0, we have ‖Ω‖2‖Σ̂ − Σ‖2 → 0 in probability. Under
‖Ω‖2‖Σ̂− Σ‖2 < 1, by Demmel (1997), for any vector u,

|(Ω̂− Ω)u|2
|Ωu|2

≤ ‖[I + Σ−1(Σ̂− Σ)]−1‖2‖Σ−1‖2‖Σ̂− Σ‖2 ≤
‖Ω‖2‖Σ̂− Σ‖2

1− ‖Ω‖2‖Σ̂− Σ‖2
,

which implies

‖Ω̂− Ω‖2 ≤
‖Ω‖22‖Σ̂− Σ‖2

1− ‖Ω‖2‖Σ̂− Σ‖2
.

Thus, ‖Ω̂− Ω‖2 = OP(
√
p/n) and |Ω̂j· − Ωj·|2 = OP(

√
p/n).
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By the Cauchy-Schwarz inequality, we have

R2 =
∑
j,k∈S

((Ω̂j· − Ωj·)(Σ̂− Σ)Ω·k)
2 ≤

∑
j,k∈S

|(Ω̂j· − Ωj·)(Σ̂− Σ)|22 · |Ω·k|22

≤ K2
0

∑
j,k∈S

|Ω̂j· − Ωj·|22 · ‖Σ̂− Σ‖22

≤ K2
0 |S| · ‖Ω̂− Ω‖22 · ‖Σ̂− Σ‖22

= OP (|S|p2n−2).(E.22)

Recall that λ1 ≥ λ2 ≥ . . . ≥ λp(p−1) ≥ 0 are eigenvalues of Λ1/2ΓΛ1/2,

f1 = tr(ΛΓ), f2 = (tr(ΛΓ)2)1/2. Note that f1 ≥ f2. Denote V :=
∑p(p−1)

d=1 λd(ηd−
1)/f2, where ηd are i.i.d. χ2

1. We first consider case (i). By Corollary F.1,

sup
t

∣∣∣∣P(nR1 − f1

f2
≤ t
)
− P(V ≤ t)

∣∣∣∣ −→ 0.

Elementary calculation shows that

P

(
nR− f1

f2
≤ t
)
≤ P

(
n(
√
R1 +

√
R2)2 − f1

f2
≤ t
)

= P
(√

nR1 ≤
√
tf2 + f1 −

√
nR2

)
= P

(
nR1 − f1

f2
≤ (
√
tf2 + f1 −

√
nR2)2 − f1

f2

)
.

Similarly,

P

(
nR− f1

f2
≤ t
)
≥ P

(
nR1 − f1

f2
≤ (
√
tf2 + f1 +

√
nR2)2 − f1

f2

)
.

By (E.22), nR2/f2 +nR2f1/f
2
2 → 0 in probability. Note that when t→ −∞

(resp. t→∞), P(V ≤ t)→ 0 (resp. P(V ≤ t)→ 1), then (4.3) holds.
Theorem 4.1(ii) follows by the same routes.

APPENDIX F: LEMMAS FOR GAUSSIAN APPROXIMATION

In this section, we present the following lemmas, which are used in the
proofs of the paper.

Lemma F.1 (Burkholder (1988), Rio (2009)). Let d > 1 and d′ =
min{d, 2}; let Dt, 1 ≤ t ≤ n, be martingale differences, and Dt ∈ Ld for
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every t. Write Mn =
∑n

t=1Dt. Then

‖Mn‖d
′
d ≤ Cd

′
d

n∑
t=1

‖Dt‖d
′
d ,(F.1)

where Cd = (d− 1)−1 if 1 < d ≤ 2 and Cd =
√
d− 1 if d > 2.

Lemma F.2. Let |a1| ≥ |a2| ≥ ... ≥ |ap| ≥ 0 be such that
∑p

i=1 a
2
i = 1;

let ηi be i.i.d. χ2 random variables. Then for all h > 0,

(F.2) sup
t

P(t ≤ a1η1 + · · ·+ apηp ≤ t+ h) ≤ h1/2
√

4/π.

Remark F.1. In the setting of Lemma F.2, if |a2| ≥ c for some constant
c > 0, then by elementary calculations the density of a1η1+a2η2 is uniformly
bounded. So the left hand side of (F.2) has bound O(h) if either |a2| ≥ c for
some constant c > 0 or |a1| ≤ 1/2.

Proof. It follows from Lemma 6.2 in Xu, Zhang and Wu (2014). For the
sake of completeness, we provide their proofs.
Write V =

∑p
j=1 ajηj . Assume |a1| ≤ 1/2. Then its characteristic function

φV (s) = E exp(
√
−1sV ), s ∈ R, satisfies

|φV (s)| =

∣∣∣∣∣∣
p∏
j=1

(1− 2
√
−1ajs)

−1/2

∣∣∣∣∣∣
=

p∏
j=1

(1 + 4a2
js

2)−1/4

≤ (1 + 4s2 + 8b4s
4 + 32/3b6s

6)−1/4,(F.3)

where b4 =
∑

j 6=k a
2
ja

2
k = 1−

∑p
k=1 a

4
k ≥ 1− a2

1 ≥ 3/4 and

b6 = 1− 3
∑
j 6=k

a4
ja

2
k −

∑
j

a6
j

≥ 1− 3
∑
j

a4
j

∑
k 6=j

a2
k + a2

j

 ≥ 1− 3a2
1 ≥ 1/4.

By the inversion formula and (F.3), the density function fV (·) of V satisfies

fV (v) =
1

2π

∫ ∞
−∞

e−
√
−1vsφV (s)ds ≤ 1

2π

∫ ∞
−∞
|φV (s)|ds < 1
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Now we shall deal with the case that |a1| > 1/2. Note that for all w >
0, supu P(u ≤ η1 ≤ u + w) ≤ w1/2

√
2/π. Then supt P (t ≤ V ≤ t+ h) ≤

(2h)1/2
√

2/π. Combining with the case |a1| ≤ 1/2, we obtain the upper
bound max(h1/2

√
4/π, h). Note that (F.2) trivially holds if h ≥ 1.

Lemma F.3. Let Yi be i.i.d N(µ,Σ) and δ > 0, then

E

∣∣∣∣Y T
1 Y1 − tr(Σ)

‖Σ‖F

∣∣∣∣2+δ

≤ ν2+δ
δ ,

E

∣∣∣∣Y T
1 Y2

‖Σ‖F

∣∣∣∣2+δ

≤ d2+δ
δ ,

where ξ is standard normal distribution, νδ = 6(2+δ)‖ξ2‖2+δ(1+µTµ/‖Σ‖F )
and dδ = 6(1 + δ)‖ξ‖22+δ(1 + µTµ/‖Σ‖F ).

Proof. It can be carried out following the same routes as those in the
proofs of Lemma E.1 in the manuscript.

Assume W1, ...,Wn are i.i.d. with mean 0 and covariance matrix Σ. Let
λ1 ≥ ... ≥ λp be the eigenvalues of Σ. Let Z1, ..., Zn be i.i.d. N(0,Σ). Define
the Lyapunov-type condition,

(C1) E

∣∣∣∣W T
1 W2

‖Σ‖F

∣∣∣∣2+δ

:= (Kδ)
2+δ,

with Kδ bounded.

Lemma F.4. Assume that (C1) holds with 0 < δ ≤ 1. Then,

sup
t
|P(Rn ≤ t)− P(R�n ≤ t)| = O(n−δ/(10+4δ))

and

sup
t
|P(Rn ≤ t)− P(R∗n ≤ t)| = O(n−δ/(10+4δ)),

where

Rn =
1

n−1

∑n
i 6=lW

T
i Wl

‖Σ‖F
, R�n =

1
n−1

∑n
i 6=l Z

T
i Zl

‖Σ‖F
, and R∗n =

ZT1 Z1 − tr(Σ)

‖Σ‖F
.
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Proof. Let h(x) = (1−min(1,max(x, 0))4)4 and hφ,t(u) = h(φ(u− t)),
φ > 0. Then it is easy to show

h∗ = sup
x
{|h′(x)|+ |h′′(x)|+ |h′′′(x)|} <∞,

sup
u,t
|h′φ,t(u)| ≤ h∗φ, sup

u,t
|h′′φ,t(u)| ≤ h∗φ2, sup

u,t
|h′′′φ,t(u)| ≤ h∗φ3,

1u≤t ≤ hφ,t(u) ≤ 1u≤t+φ−1 .

Then, P(Rn ≤ t) ≤ Ehφ,t(Rn).
We first show that

sup
t
|Ehφ,t(Rn)− Ehφ,t(R

�
n)| ≤ CLδ(n, φ),(F.4)

where

Lδ(n, φ) =

{
E(W1ΣW1)1+δ/2

nδ/2‖Σ‖2+δ
F

+
K2+δ
δ

n1+δ/2

}
φ2+δ.

Let Γi =
∑i−1

l=1 Wl +
∑n

l=i+1 Zl and

Hi =
ΓTi Γi −

∑i−1
l=1 W

T
l Wl −

∑n
l=i+1 Z

T
l Zl

(n− 1)‖Σ‖F
,

Ji =
2ΓTi Wi

(n− 1)‖Σ‖F
,

Mi =
2ΓTi Zi

(n− 1)‖Σ‖F
.

Note Hi and Γi are independent of Wi and Zi.
By taylor expansion, we have

hφ,t(Hi + Ji)− hφ,t(Hi +Mi) = I + II + III,

where

I = h′φ,t(Hi)(Ji −Mi),

II =
1

2
h′′φ,t(Hi)(J

2
i −M2

i ).

Then,

EI = E{E(h′φ,t(Hi)(Ji −Mi)|Wi, Zi)}

=
2

(n− 1)‖Σ‖F
E
[
(W T

i − ZTi )E(h′φ,t(Γi)Hi)
]

= 0,
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EII =
1

2
E{E[h′′φ,t(Hi)(J

2
i −M2

i )|W1, ...,Wi−1, Zi+1, ..., Zn]}

=
2

(n− 1)2‖Σ‖2F
E
[
h′′φ,t(Hi)E(ΓTi WiW

T
i Γi − ΓiZiZ

T
i Γi|W1, ...,Wi−1, Zi+1, ..., Zn)

]
= 0.

Since 0 ≤ h(x) ≤ 1 for all x and |h′′′φ,t(u)| ≤ h∗φ3, we have

EIII ≤ Emin
{
h∗φ

2(|Ji|2 + |Mi|2), h∗φ
3(|Ji|3 + |Mi|3)

}
≤ Cφ2+δ(E|Ji|2+δ + E|Mi|2+δ).

Denote q = 2 + δ. For a fixed vector y ∈ Rp, ZTn y ∼ N(0, yTΣy). Then
E|ZTn y|q = cq(y

TΣy)q/2.
By Rosenthal’s inequality,

E|Γiy|qq ≤ cq
(
i‖W T

1 y‖qq + (n− i)‖ZTn y‖qq + nq/2(yTΣy)q/2
)
.

Thus,

‖ΓiWi‖qq ≤ cq
(
n‖W T

1 W2‖qq + nq/2E(W T
1 ΣW1)q/2

)
.

Hence,

E|Ji|q ≤ C
n‖W T

1 W2‖qq + nq/2E(W T
1 ΣW1)q/2

nq‖Σ‖qF
.

Similarly, ‖ΓiZi‖qq ≤ cq
(
nE(W T

1 ΣW1)q/2 + nq/2‖Σ‖qF
)
. So

E|Mi|q ≤ C
nE(W T

1 ΣW1)q/2

nq‖Σ‖qF
+ n−q/2.

Observe that

hφ,t(Rn)− hφ,t(R�n) =
n∑
i=1

[hφ,t(Hi + Ji)− hφ,t(Hi +Mi)].

By Hölder inequality, since E(W T
1 ΣW1)q/2 ≥ (EW T

1 ΣW1)q/2 = ‖Σ‖qF ,

sup |Ehφ,t(Rn)− Ehφ,t(R
�
n)| ≤ Cφq

{
Kq
δ

nq−2
+

E(W T
1 ΣW1)q/2

nq/2−1‖Σ‖qF
+

1

nq/2−1

}

≤ Cφq

{
Kq
δ

nq−2
+

E(W T
1 ΣW1)q/2

nq/2−1‖Σ‖qF

}
.
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Thus,

P(Rn ≤ t) ≤ Ehφ,t(Rn) ≤ Ehφ,t(R
�
n) + CLδ(n, φ) ≤ P(R�n ≤ t+ φ−1) + CLδ(n, φ).

Similarly, we can get

P(Rn ≤ t) ≥ P(R�n ≤ t− φ−1)− CLδ(n, φ).

Let η1, ..., ηp be i.i.d. χ2
1, ζ1, ..., ζp be i.i.d. χ2

n−1 and they are mutually
independent. Recall that λ1 ≥ λ2 ≥ ... ≥ λp ≥ 0. Observe that

R�n =

∑
i 6=l Z

T
i Zl

(n− 1)‖Σ‖F
=D

p∑
j=1

λj
‖Σ‖F

(
ηj −

ζj
n− 1

)
=D R∗n −R4,

where

R4 =
1

(n− 1)‖Σ‖F

p∑
j=1

λj(ζj − (n− 1)).

Note that ER2
4 = 2(n− 1)−1. By Lemma F.2 and the Markov and triangle

inequalities,

P(R�n ≤ t) ≤ P(R∗n ≤ t− ε) + P(|R4| ≥ ε) ≤ P(R∗n ≤ t) +
√
ε
√

4π +
2

(n− 1)ε2
.

Similarly, we have

P(R�n ≤ t) ≥ P(R∗n ≤ t)−
√
ε
√

4π − 2

(n− 1)ε2
.

Taking ε = n−2/5,

|P(R�n ≤ t)− P(R∗n ≤ t)| ≤ 3(n− 1)−1/5.

Applying Lemma F.2, we obtain

P(Rn ≤ t) ≤ Ehφ,t(Rn) ≤ Ehφ,t(R
�
n) + CLδ(n, φ) ≤ P(R�n ≤ t+ φ−1) + CLδ(n, φ).

sup
t
|P(Rn ≤ t)− P(R�n ≤ t)| = O(Lδ(n, φ) + φ−1/2 + n−1/5)

and

sup
t
|P(Rn ≤ t)− P(R∗n ≤ t)| = O(Lδ(n, φ) + φ−1/2 + n−1/5).

By Jensen’s inequality,

E(W T
1 ΣW1)q/2 ≤ E|W T

1 W2|q/2 = Kq
δ‖Σ‖

q
F .

Then we can choose φ � n(q−2)/(1+2q) = nδ/(5+2δ) and the corresponding
convergence rate is O(n−δ/(10+4δ)).
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For symmetric matrix A, define the Lyapunov-type condition,

E

∣∣∣∣W T
1 (I −A)W2

‖Σ−AΣ‖F

∣∣∣∣2+δ

= (KA
δ )2+δ,

E

∣∣∣∣W T
1 AW1 − tr(AΣ)

‖Σ−AΣ‖F

∣∣∣∣2+%

= (κ%)
2+%,(C2)

E

∣∣∣∣ZT1 AZ1 − tr(AΣ)

‖Σ−AΣ‖F

∣∣∣∣2+%

= (c%)
2+%.

Lemma F.5. Assume that (C2) holds with 0 < δ ≤ 1, % ≥ 0 and KA
δ

bounded. Then,

sup
t
|P(Qn ≤ t)− P(Q�n ≤ t)| = O(φ−1/2)

where

φ2{ 1√
n
κ0 +

1

n
κ2

0}+ φ2+δ{ 1

nδ/2
+

1

n1+δ
} = φ−1/2,

Qn =
1

‖Σ−AΣ‖F

 1

n− 1

n∑
i 6=l

W T
i Wl −

1

n2

n∑
i,l

WiAWl − tr(Σ)

 ,

Q�n =
1

‖Σ−AΣ‖F

 1

n− 1

n∑
i 6=l

ZTi Zl −
1

n2

n∑
i,l

ZiAZl − tr(Σ)

 .

Then the convergence rate is n−δ/(10+4δ) +κ
2/5
0 n−1/5, which goes to 0 if and

only if κ0/
√
n→ 0.

Proof. Firstly, following the same procedure in the proof of Lemma F.4,
we need to show

sup
t
|Ehφ,t(Qn)− Ehφ,t(Q

�
n)| ≤ CL†δ(n, φ),(F.5)

where

L†δ(n, φ) = φ2{− 4√
n
κ0+

1

n
(κ2

0+c2
0)}+φ2+δ (KA

δ )2+δ

nδ/2
+

1

n1+%
φ2+%(κ2+%

% +c2+%
% ).
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Let Γi =
∑i−1

l=1 Wl +
∑n

l=i+1 Zl and

Hi =
1

‖Σ−AΣ‖F

[
1

n− 1
ΓTi (I − n− 1

n
A)Γi −

1

n− 1

i−1∑
l=1

W T
l Wl

− 1

n− 1

n∑
l=i+1

ZTl Zl − tr(Σ)− 1

n
tr(AΣ)

]
,

Ji =
2

n−1ΓTi (I − n−1
n A)Wi − 1

nW
T
i AWi + 1

ntr(AΣ)

‖Σ−AΣ‖F
,

Mi =
2

n−1ΓTi (I − n−1
n A)Zi − 1

nZ
T
i AZi + 1

ntr(AΣ)

‖Σ−AΣ‖F
.

Note Hi and Γi are independent of Wi and Zi.
By taylor expansion, we have

hφ,t(Hi + Ji)− hφ,t(Hi +Mi) = I + II + III,

where

I = h′φ,t(Hi)(Ji −Mi),

II =
1

2
h′′φ,t(Hi)(J

2
i −M2

i ).

It is easy to show that EI = 0.
Since E(WiW

T
i |Γi) = E(ZiZ

T
i |Γi) and EW T

1 AW1 = EZT1 AZ1 = tr(AΣ), we
have

EII ≤ cφ2E{E[J2
i −M2

i |W1, ...,Wi−1, Zi+1, ..., Zn]}

≤ cφ2

‖Σ−AΣ‖2F
E

{
4

n(n− 1)
E

[
Γi(I −

n− 1

n
A)Zi(ZiAZi − tr(AΣ))|W1, ...,Wi−1, Zi+1, ..., Zn

]
− 4

n(n− 1)
E

[
Γi(I −

n− 1

n
A)Wi(WiAWi − tr(AΣ))|W1, ...,Wi−1, Zi+1, ..., Zn

]
+

1

n2
E
[
(W T

i AWi − tr(AΣ))2 − (ZTi AZi − tr(AΣ))2|W1, ...,Wi−1, Zi+1, ..., Zn
]}

.

Note E
[
Γi(I − n−1

n A)Zi(ZiAZi − tr(AΣ))|W1, ...,Wi−1, Zi+1, ..., Zn
]

= 0.
By Cauchy-Schwarz inequality,

E

∣∣∣∣Γi(I − n− 1

n
A)Wi(WiAWi − tr(AΣ))

∣∣∣∣
≤ ‖Γi(I −

n− 1

n
A)Wi‖2 ‖WiAWi − tr(AΣ)‖2

=
√
n− 1‖(I − n− 1

n
A)Σ‖F ‖WiAWi − tr(AΣ)‖2 .
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Thus, by Lyapunov-type condition (C2),

EII ≤ cφ2

‖Σ−AΣ‖2F

{
− 4

n3/2
κ0‖(I −

n− 1

n
A)Σ‖F ‖(I −A)Σ‖F

+
1

n2
(κ2

0 + c2
0)‖(I −A)Σ‖2F

}
.

Employing similar derivations, for sufficient large n,

EIII ≤ c

{
(κ2+%
% + c2+%

% )

n2+%
φ2+% +

(KA
δ )2+δ

n1+δ/2
φ2+δ

}
.

Then, by basic calculation, we can show (F.5). Note c% is a constant.
The rest of the proof follows from the same procedure in the proof of Lemma
F.4.

Define the Lyapunov-type condition,

E

∣∣∣∣W T
1 AW2

‖AΣ‖F

∣∣∣∣2+δ

= (KB
δ )2+δ,

E

∣∣∣∣W T
1 AW1 − tr(AΣ)

‖AΣ‖F

∣∣∣∣2+%

= (τ%)
2+%,(C3)

Corollary F.1. Assume that (C3) holds with 0 < δ ≤ 1, % ≥ 0 and
KB
δ bounded. Then,

sup
t

∣∣∣∣∣∣P
 1

n

n∑
i,l=1

W T
i AWl − tr(AΣ)

‖AΣ‖F
≤ t

− P

 1

n

n∑
i,l=1

ZTi AZl − tr(AΣ)

‖AΣ‖F
≤ t

∣∣∣∣∣∣ = O(φ−1/2)

where

φ2{ 1√
n
τ0 +

1

n
τ2

0 }+ φ2+δ{ 1

nδ/2
+

1

n1+δ
} = φ−1/2.

Then the convergence rate is n−δ/(10+4δ) + τ
2/5
0 n−1/5, which goes to 0 if and

only if τ0/
√
n→ 0.

Lemma F.6. Let B1, B2 ∈ {1, 2, ..., n} and |B1| = |B2| = m = n/2. For
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k = 1, 2, denote

Rn,k =
1

2‖Σ‖F

 1

m− 1

∑
i 6=l∈Bk

W T
i Wl +

1

m− 1

∑
i′ 6=l′∈Bck

W T
i′Wl′

− 2

m

∑
i∈Bk,i′∈Bck

W T
i Wi′

 ,

R�n,k =
1

2‖Σ‖F

 1

m− 1

∑
i 6=l∈Bk

ZTi Zl +
1

m− 1

∑
i′ 6=l′∈Bck

ZTi′ Zl′

− 2

m

∑
i∈Bk,i′∈Bck

ZTi Zi′

 .

Let I1 = B1 ∩B2, I2 = B1 ∩Bc
2, I3 = Bc

1 ∩B2 and I4 = Bc
1 ∩Bc

2. Define

d(B1, B2) = max
{∣∣∣|I1| −

n

4

∣∣∣ , ∣∣∣|I2| −
n

4

∣∣∣ , ∣∣∣|I3| −
n

4

∣∣∣ , ∣∣∣|I4| −
n

4

∣∣∣} .
Assume that (C1) holds with 0 < δ ≤ 1 and d(B1, B2) ≤ n1/2 log n. Then,

sup
t
|P(Rn,1 ≤ t, Rn,2 ≤ t)− P(R�n,1 ≤ t, R�n,2 ≤ t)| = O(n−δ/(10+4δ))

Proof. By simple calculation, we have∑
i 6=l∈B1

W T
i Wl =

∑
i 6=l∈I1

W T
i Wl +

∑
i 6=l∈I2

W T
i Wl + 2

∑
i∈I1,l∈I2

W T
i Wl,∑

i′ 6=l′∈Bc1

W T
i′Wl′ =

∑
i′ 6=l′∈I4

W T
i′Wl′ +

∑
i′ 6=l′∈I3

W T
i′Wl′ + 2

∑
i′∈I4,l′∈I3

W T
i′Wl′ ,∑

i 6=l∈B2

W T
i Wl =

∑
i 6=l∈I1

W T
i Wl +

∑
i 6=l∈I3

W T
i Wl + 2

∑
i∈I1,l∈I3

W T
i Wl,∑

i′ 6=l′∈Bc2

W T
i′Wl′ =

∑
i′ 6=l′∈I4

W T
i′Wl′ +

∑
i′ 6=l′∈I2

W T
i′Wl′ + 2

∑
i′∈I4,l′∈I2

W T
i′Wl′ ,∑

i∈B1,i′∈Bc1

W T
i Wi′ =

∑
i∈I1

W T
i

∑
i′∈I4

Wi′ +
∑
i∈I2

W T
i

∑
i′∈I4

Wi′ +
∑
i∈I1

W T
i

∑
i′∈I3

Wi′

+
∑
i∈I2

W T
i

∑
i′∈I3

Wi′ ,∑
i∈B2,i′∈Bc2

W T
i Wi′ =

∑
i∈I1

W T
i

∑
i′∈I4

Wi′ +
∑
i∈I3

W T
i

∑
i′∈I4

Wi′ +
∑
i∈I1

W T
i

∑
i′∈I2

Wi′

+
∑
i∈I3

W T
i

∑
i′∈I2

Wi′ .
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Let

Ψ1 =
1

2(m− 1)|Γ|2F

 ∑
i 6=l∈I1

W T
i Wl +

∑
i′ 6=l′∈I4

W T
i′Wl′ +

∑
i 6=l∈I2

W T
i Wl +

∑
i′ 6=l′∈I3

W T
i′Wl′

−2
∑
i∈I1

W T
i

∑
i′∈I4

Wi′ − 2
∑
l∈I2

W T
l

∑
l′∈I3

Wl′

 ,

Ψ2 =
1

2m|Γ|2F

∑
i∈I1

W T
i

∑
l∈I2

Wl +
∑
i∈I3

W T
i

∑
l∈I4

Wl −
∑
i∈I1

W T
i

∑
l∈I3

Wl −
∑
i∈I2

W T
i

∑
l∈I4

Wl

 ,

Ψ�1 =
1

2(m− 1)|Γ|2F

 ∑
i 6=l∈I1

Y T
i Yl +

∑
i′ 6=l′∈I4

Y T
i′ Yl′ +

∑
i 6=l∈I2

Y T
i Yl +

∑
i′ 6=l′∈I3

Y T
i′ Yl′

−2
∑
i∈I1

Y T
i

∑
i′∈I4

Yi′ − 2
∑
l∈I2

Y T
l

∑
l′∈I3

Yl′

 ,

Ψ�2 =
1

2m|Γ|2F

∑
i∈I1

Y T
i

∑
l∈I2

Yl +
∑
i∈I3

Y T
i

∑
l∈I4

Yl −
∑
i∈I1

Y T
i

∑
l∈I3

Yl −
∑
i∈I2

Y T
i

∑
l∈I4

Yl

 .

Then, we have

Rn,1 = Ψ1 + 2Ψ2 +
2

m(m− 1)|Γ|2F

 ∑
i∈I1,l∈I4

W T
i Wl +

∑
i∈I2,l∈I3

W T
i Wl

+
∑

i∈I1,l∈I2

W T
i Wl +

∑
i∈I3,l∈I4

W T
i Wl

 ,

Rn,2 = Ψ1 − 2Ψ2 +
2

m(m− 1)|Γ|2F

 ∑
i∈I1,l∈I4

W T
i Wl +

∑
i∈I2,l∈I3

W T
i Wl

+
∑

i∈I1,l∈I3

W T
i Wl +

∑
i∈I2,l∈I4

W T
i Wl

 .

Simple calculation shows that, for j 6= k and j, k = 1, 2, 3, 4,

1

m(m− 1)|Γ|F

∑
i∈Ij ,l∈Ik

W T
i Wl = OP(

1

m
).
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By Lemma F.2 and triangle inequality, applying similar argument in the
proof of (E.10), we obtain,

sup
t
|P(Rn,1 ≤ t, Rn,2 ≤ t)− P(Ψ1 + 2|Ψ2| ≤ t)| = O(n−1/5).

We approximate |x| by the function

p(x) =

{
− 1

16(5x8 − 21x6 + 35x4 − 35x2) |x| ≤ 1

|x| o.w..

Then we have that for some constant p∗,

supx{|p′(x)|+ |p′′(x)|+ |p′′′(x)|} = p∗ <∞.

Let pφ(x) = φ−1p(φx), then

|x| − φ−1 ≤ pφ(x) ≤ |x| ≤ pφ(x) + φ−1.

Recall hφ,t(·) in the proof of Lemma F.4. Define gφ,t(x, y) = hφ,t(x+2pφ(y)).
If follows that

1x+2|y|≤t ≤ gφ,t(x, y) ≤ 1x+2|y|≤t+3φ−1 .

By simple calculation, we can show that for some constant g∗,

sup
x,y,t

∣∣∣∣∂gφ,t(x, y)

∂x

∣∣∣∣ ≤ g∗φ, sup
x,y,t

∣∣∣∣∂gφ,t(x, y)

∂y

∣∣∣∣ ≤ g∗φ,
sup
x,y,t

∣∣∣∣∂2gφ,t(x, y)

∂x2

∣∣∣∣ ≤ g∗φ2, sup
x,y,t

∣∣∣∣∂2gφ,t(x, y)

∂x∂y

∣∣∣∣ ≤ g∗φ2,

sup
x,y,t

∣∣∣∣∂2gφ,t(x, y)

∂y2

∣∣∣∣ ≤ g∗φ2, sup
x,y,t

∣∣∣∣∂3gφ,t(x, y)

∂x3

∣∣∣∣ ≤ g∗φ3,

sup
x,y,t

∣∣∣∣∂3gφ,t(x, y)

∂x2∂y

∣∣∣∣ ≤ g∗φ3, sup
x,y,t

∣∣∣∣∂3gφ,t(x, y)

∂x∂y2

∣∣∣∣ ≤ g∗φ3,

sup
x,y,t

∣∣∣∣∂3gφ,t(x, y)

∂y3

∣∣∣∣ ≤ g∗φ3.
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Note two dimensional taylor expansion,

gφ,t(x, y) = gφ,t(x0, y0) +
∂gφ,t(x0, y0)

∂x
(x− x0) +

∂gφ,t(x0, y0)

∂y
(y − y0)

+
∂2gφ,t(x0, y0)

∂x2

(x− x0)2

2
+ 2

∂2gφ,t(x0, y0)

∂x∂y

(x− x0)(y − y0)

2

+
∂2gφ,t(x0, y0)

∂y2

(y − y0)2

2
+
∂3gφ,t(x∗, y∗)

∂x3

(x− x0)3

3!

+3
∂3gφ,t(x∗, y∗)

∂x2∂y

(x− x0)2(y − y0)

3!
+ 3

∂3gφ,t(x∗, y∗)

∂x∂y2

(x− x0)(y − y0)

3!

+
∂3gφ,t(x∗, y∗)

∂y3

(y − y0)3

3!
.

By expanding gφ,t(Ψ1,Ψ2)− gφ,t(Ψ�1,Ψ�2) similarly as in Lemma F.4, we can
prove, there exist a constant C > 0,

sup
t
|Egφ,t(Ψ1,Ψ2)− Egφ,t(Ψ

�
1,Ψ

�
2)| ≤ CLδ(n, φ),

where Lδ(n, φ) is the same as the one in Lemma F.4.
Thus,

P(Rn,1 ≤ t, Rn,2 ≤ t) ≤ Egφ,t(Ψ1,Ψ2) + Cn−1/5 ≤ Egφ,t(Ψ
�
1,Ψ

�
2) + CLδ(n, φ) + Cn−1/5

≤ P(R�n,1 ≤ t+ 3φ−1, Rn,2 ≤ t+ 3φ−1) + CLδ(n, φ) + Cn−1/5.

Similarly, we can get

P(Rn,1 ≤ t, Rn,2 ≤ t) ≥ P(R�n,1 ≤ t− 3φ−1, Rn,2 ≤ t− 3φ−1)− CLδ(n, φ)− Cn−1/5.

Applying Lemma F.2, we obtain

sup
t
|P(Rn,1 ≤ t, Rn,2 ≤ t)− P(R�n,1 ≤ t, R�n,2 ≤ t)| = O(Lδ(n, φ) + φ−1/2 + n−1/5).

Then we can choose φ � nδ/(5+2δ) and the corresponding convergence rate
is O(n−δ/(10+4δ)).

Corollary F.2. Assume that (C1) holds with 0 < δ ≤ 1. Then,

sup
t
|P(Rn,1 ≤ t)− P(R�n ≤ t)| = O(n−δ/(10+4δ)).
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