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Abstract

Vector autoregressive (VAR) models have a wide range of scientific applications in econo-
metrics, computational biology, climatology, and so on. Prior work has focused on linear
VAR models. However, linear VAR approaches are somewhat restrictive in practice. This
paper introduces the non-parametric sparse additive model, a more flexible framework to
address this challenge. Our method uses basis expansions to construct nonlinear VAR
models. We provide convergence rates and model selection consistencies of the estima-
tors in terms of the dependence measures of the processes, the moment condition of the
errors, the sparsity condition and basis expansions. Our theory substantially extends ear-
lier linear VAR models by allowing non-Gaussianity and non-linearity structures. As our
main technical tools, we derive sharp Bernstein-type inequalities for tail probabilities for
non-sub-Gaussian linear and nonlinear VAR processes. Modulo some constants, our expo-
nential inequalities coincide with the classical Bernstein inequality for independent random
variables. We also provide numerical experiments that support our theoretical results and
display advantages of using nonlinear VAR model for a time series gene expression data
set.

Keywords: Vector autoregressive (VAR) model, Bernstein inequality, Sparsity, Basis
expansion, Time series

1. Introduction

Driven by a diversity of contemporary scientific applications, high dimensional data with
network structure play a key role in statistics. The demand for modelling and forecasting
such data arises from genomics, panel studies in economics, environmental studies, and
communication engineering, among others. For example, reconstruction of gene regulatory
networks from expression data has become a canonical problem in computational system
biology (Lawrence et al., 2010); analysis of roll call of legislative bodies is essential in
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political science (Morton and Williams, 2010); understanding climate changes implies to be
able to predict the behavior of climate variables and their relationship (Liu et al., 2010).
The inference of networks that describe how variables influence each other has emerged
simultaneously from all these fields.

Over the past decade, a number of statistical models have been developed for estimating
networks from high dimensional data. Graphical models have emerged as a powerful class
of models and a large amount of theoretical advances have been introduced for independent
and identically distributed (i.i.d.) data under structural assumptions; e.g., see Bühlmann
and van de Geer (2011). Under time series setting, there also exists a substantial literature
on network inference based on sparse linear models or Granger causality concepts. Fried-
man (2004) and Lèbre (2009) applied dynamic Bayesian networks to time series data. Basu
and Michailidis (2015) investigated theoretical properties of Lasso penalized high dimen-
sional linear vector autoregressive (VAR) models for Gaussian processes. This was further
extended to multi-block VAR models in Lin and Michailidis (2017). Guo et al. (2016) pro-
posed a class of VAR models with banded coefficient matrices. Gao et al. (2019) extend the
idea of banded coefficient matrices to study spatio-temporal VAR models. Hall et al. (2018)
studied regularized high-dimensional autoregressive generalized linear models. Ghosh et al.
(2019) developed a Bayesian VAR model with multivariate stochastic volatility.

Despite many mechanisms (e.g. regulatory methods in biology, cf. Sima et al. (2009) for
a survey) involve nonlinear dynamics, very limited work focused on network inference for
variables in the presence of such dynamics. Mazur et al. (2009) and Äijö and Lähdesmäki
(2009) applied Bayesian learning to deal with the stochasticity of biological data. Lim et al.
(2015) introduced a family of VAR models based on different operator-valued kernels to
identify the nonlinear dynamic system. Zhou and Raskutti (2018) provided a framework of
autoregressive models under the generalized linear models by exploiting reproducing kernel
Hilbert spaces, and analyzed the convex penalized sparse and smooth estimator. In this
paper, we aim at extending the framework of sparse linear VAR models to that of sparse
non-parametric nonlinear VAR models.

The goal of this paper is two folds: (i) to develop sharp inequalities for tail probabilities
for non-sub-Gaussian nonlinear VAR processes; (ii) to propose a new class of methods for
high dimensional non-parametric VAR models and to apply our inequalities to obtain theo-
retical properties of `1 regularized estimators. It is expected that our framework, inequalities
and tools will be useful in other high-dimensional linear and nonlinear VAR problems.

In our theoretical framework, we shall consider the following nonlinear VAR models

Xi = h(1)(Xi−1) + h(2)(Xi−2) + · · ·+ h(d)(Xi−d) + εi, (1)

where εi ∈ Rp, i ∈ Z, are i.i.d random vectors, Xi = (Xi,1, ..., Xi,p)
> ∈ Rp, h(j) =

(h
(j)
1 , . . . , h

(j)
p )> and h

(j)
k : Rp → R, 1 ≤ j ≤ d, 1 ≤ k ≤ p, are real-valued functions.

By stacking lagged vectors, we can let d = 1 in (1) and consider the nonlinear VAR(1)
model. Then (1) can be rewritten as

Xi = h(Xi−1) + εi. (2)

Based on model (2), we shall develop sharp Bernstein-type inequalities. Establishing
exponential-type tail probability inequalities for temporal dependent processes is a chal-
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lenging problem. There has been some effort to derive concentration inequalities for non-
i.i.d. processes. For example, generalizations of Bernsteins inequality to α-mixing and
φ-mixing random variables have been studied in Bosq (1993), Modha and Masry (1996),
Samson (2000) and Merlevède et al. (2009, 2011), among others. Zhang (2021) provided
Bernstein-type inequality for dependent random variables under geometric moment contrac-
tion. Exponential-type inequalities were also derived for sums of Markov chains in Douc
et al. (2008) under some drift condition and in Adamczak (2008) under the minorization
condition. Unfortunately, all these inequalities involve extra non-constant factors to ac-
count for weak dependence, and are not as sharp as Bernsteins inequality for independent
random variables. Recently, Fan et al. (2018) and Jiang et al. (2018) established sharp
Hoeffding-type inequality and Bernstein-type inequality for stationary Markov dependent
random variables. Chen and Wu (2018) derived exponential inequalities and Nagaev-type
inequalities for one dimensional linear (or moving average) processes under both short- and
long-range dependence. Due to the interactions between temporal and cross-sectional de-
pendence, tail probabilities of high dimensional time series is much more complicated than
one dimensional ones. In this work, we establish Bernstein-type inequalities for nonlinear
VAR processes. Modulo some constants, our Bernstein-type inequalities are as sharp as the
classical Bernstein inequality for i.i.d. random variables. To the best of our knowledge, we
are among the first to develop sharp Bernstein-type inequalities for high dimensional time
series.

To study nonlinear dynamical systems from high dimensional time series data, in this
paper, we introduce sparse additive non-parametric VAR models. Our method combines
ideas from sparse linear modelling, additive non-parametric regression and VAR models.
Each nonlinear function hj , 1 ≤ j ≤ p, in model (2) can be expressed as:

hj(x) =

p∑
k=1

hjk(xk),

where x = (x1, ..., xp)
> ∈ Rp and hjk(·) are functions of one dimensional variables. The

underlying VAR model is similar to sparse linear regression, but we impose a sparsity
constraint on the index set {(j, k) : hjk 6= 0} of functions hjk that are not identically zero.
Then we estimate each nonlinear function hjk in terms of a truncated set of basis functions.
Ravikumar et al. (2009) proposed a sparse additive linear models using a basis expansion
and LASSO type penalty under i.i.d. data. Meier et al. (2009) considered a sparsity-
smoothness penalty for high-dimensional generalized additive models. Koltchinskii and
Yuan (2010), Raskutti et al. (2012) and Yuan and Zhou (2016) studied a different framework,
sparse additive kernel regression, for the cases where the component functions belong to a
reproducing kernel Hilbert spaces. They penalized the sum of the reproducing kernel Hilbert
space norms of the component functions. Their sparse additive linear models are extended
to autoregressive generalized linear models in Zhou and Raskutti (2018). Lim et al. (2015)
introduced operator-valued kernel-based VAR models, and developed proximal gradient
descent algorithms. However, their paper does not provide any theoretical guarantees.

In this work, our method has the nice feature that it decouples smoothness and sparsity.
This leads to a simple block coordinate descent algorithm (cf. Ravikumar et al. (2009)) that
can be carried out with any non-parametric smoother and scales easily to high dimensions.
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Besides, with our new probability inequalities as primary tools, we can analyze the proper-
ties of `1 regularized estimators under non-Gaussian errors in the context where p is much
larger than n. Roughly speacking, p can be as large as en

c
for some constant 0 < c < 1

if εi has finite exponential moments, and the power constant c is related to the truncated
number of basis expansion. We shall give a detailed description on how the dependence
measures of the processes, the moment condition of the errors, the sparsity of functions and
basis expansion affect the rate of convergence and the model selection consistency of the
estimator.

The rest of the paper is structured as follows. Section 2 presents Bernstein-type in-
equalities for nonlinear VAR processes in (2) under Lipschitz condition and different types
of moment conditions for the error processes. In Section 3, we first formulate an `1 regular-
ized optimization problem for nonlinear VAR models in the population level that induces
sparsity. Then we derive a sample version of the problem using basis expansion. Theoretical
properties that analyze the effectiveness of the estimators in the high dimensional setting
are also presented. Simulation studies and real data analysis are carried out in Section 4
and 5, respectively. Proofs of Theorems in Section 3 and technical lemmas are contained in
Section 6.

We now introduce some notation. For a vector x = (x1, ..., xp)
>, define |x|q = (|x1|q +

... + |xp|q)1/q, q ≥ 1, |x| = |x|2, and abs(x) := (|x1|, . . . , |xp|)>. For a matrix A = (aij),
write |A|∞ = maxi,j |aij |, the Frobenius norm ‖A‖F = (

∑
ij a

2
ij)

1/2, the spectral norm
‖A‖2 = max|x|2≤1 |Ax|2 and the matrix infinity norm ‖A‖∞ = maxi

∑
j |aij |. Let λmin(A)

(resp. λmax(A)) be the minimum (resp. maximum) eigenvalue of A. Let ξ = (ξ1, ..., ξp)
> be

a random vector. Write ξ ∈ Lm, m ≥ 1, if the m-norm ‖ξ‖m := (E|ξ|m)1/m < ∞. Denote
‖ξ‖ := ‖ξ‖2. For two sequences of real numbers {an} and {bn}, write an = O(bn) (resp.
an � bn) if there exists a constant C such that |an| ≤ C|bn| (resp. 1/C ≤ an/bn ≤ C) holds
for all sufficiently large n, and write an = o(bn) if limn→∞ an/bn = 0.

Let εi, i ∈ Z, be i.i.d. random vectors and Fk = (. . . , εk−1, εk). Define projection
operator Pk, k ∈ Z, by Pk(·) = E(·|Fk) − E(·|Fk−1). Let (ε′k) be an i.i.d copy of (εk). For
Xi = H(. . . , εi−1, εi), where H is some measurable function, we define the coupled version
Xi,{k} = H(. . . , εk−1, ε

′
k, εk+1, . . . , εi), which has the same distribution as Xi with εk in the

latter replaced by an i.i.d. copy ε′k.

2. Bernstein Inequalities for Nonlinear VAR Processes

Exponential inequalities play a fundamental role in high dimensional inference. Differently
from i.i.d data, directly applying concentration inequalities for dependent random variables
to high dimensional time series problems may lead to suboptimal results in many cases, due
to the interrelationship between temporal and cross sectional dependencies. Zhang and Wu
(2017) and Zhang and Wu (2020) introduced new dependence measures to describe temporal
and cross-sectional dependence of high dimensional time series, then derived Fuk-Nagaev
type inequalities for heavy tailed random vectors to study statistical properties of sample
mean vector and spectral density matrix estimation, respectively. In this section, we shall
present new and powerful inequalities for tail probabilities of nonlinear vector autoregressive
(VAR) processes. The processes can be non-Gaussian. In Theorems 1 and 4, we provide
Bernstein-type inequalities for nonlinear VAR process under finite moment condition and
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exponential moment condition, respectively. In contrast, exponential inequalities provided
in Basu and Michailidis (2015) are only applicable to Gaussian processes and linear VAR
models with Gaussian innovation vectors (cf. Proposition 2.4 therein).

To establish exponential inequalities, we introduce the following assumptions on function
h and errors εi in model (2). Recall ‖ · ‖∞ is the matrix infinity norm.

Assumption 1 Consider model (2), let h = (h1, ..., hp)
> and hj : Rp → R, 1 ≤ j ≤ p be

real valued functions. Assume that componentwise Lipschitz condition holds for each hj.
That is, for any x = (x1, ..., xp)

>, y = (y1, .., yp)
> ∈ Rp, 1 ≤ j ≤ p, there exists coefficients

Hjk ≥ 0 such that

|hj(x)− hj(y)| ≤
p∑

k=1

Hjk|xk − yk|. (3)

Write H = (Hjk)p×p and ‖H‖∞ = max1≤j≤p
∑p

k=1Hjk. Assume there exists a constant
0 < ρ < 1 such that ‖H‖∞ ≤ ρ.

The above assumption requires componentwise Lipschitz condition for nonlinear VAR
processes. If Assumption 1 fails with ‖H‖∞ = 1, then Xi may not have a stationary
solution. A prominent example is the random walk Xi = Xi−1 + εi which has ‖H‖∞ = 1.
This assumption can be easily extended to nonlinear VAR(d) processes. See also Chen
and Tsay (1993), Diaconis and Freedman (1999), Jarner and Tweedie (2001), Shao and Wu
(2007), Fan and Yao (2008) and Chen and Wu (2016) for nonlinear autoregressive processes.
Intuitively, ρ quantifies the strength of dependence. For example, in one dimensional AR(1)
model, Xi = ρXi−1 + εi. Larger ρ suggests stronger dependence.

Assumption 2 For i.i.d. random vectors εi ∈ Rp, i ∈ Z, assume

(i) (finite moment) µq := max1≤j≤p ‖εij‖q <∞ for some q ≥ 2.

(ii) (exponential moment) µe := max1≤j≤p E
(
exp(c0|εij |)

)
, for some c0 > 0.

We first consider the finite moment case of the error vectors εi (cf. Assumption 2(i)). The
following theorem provides a Bernstein-type inequality for bounded Lipschitz continuous
functions.

Theorem 1 Assume that function g : Rp → R, is Lipschitz continuous with |g(x)−g(y)| ≤∑p
i=1Gi|xi − yi|, for any x = (x1, ..., xp)

>, y = (y1, ..., yp)
> ∈ Rp, where Gj are Lipschitz

coefficients. Denote G = (G1, ..., Gp)
> and τ := |G|1 =

∑p
j=1Gj. Further assume g is

bounded with |g|∞ ≤ M . For the VAR process (2), under Assumption 1 and Assumption
2(i), we have, for all z ≥ 0,

P
(∣∣∣ n∑

i=1

(
g(Xi)− Eg(Xi)

)∣∣∣ ≥ z) ≤ 2e
− z2

c1τ
2n+c2τMz , (4)

where c1 and c2 are positive constants only depending on q, ρ and µq.
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Based on the proof of Theorem 1, we can have the explicit form for coefficients c1 and c2

as c1 = 32e2(−ρ2logρ)−2µ2
2 and c2 = 8e(−ρ2logρ)−1. If function g is bounded by an absolute

constant, then we can simplify above tail inequality and obtain the following Hoeffding type
inequality.

Corollary 2 If g is bounded with |g|∞ ≤ 1, then we have

P
(∣∣∣ n∑

i=1

(
g(Xi)− Eg(Xi)

)∣∣∣ ≥ z) ≤ 2e−c1z
2/(τ2n), (5)

where c1 is a positive constant depending only on q, ρ and µq.

Remark 3 Note that up to a multiplicative constant, our Bernstein-type inequality (4)
coincides with classical Bernsteins inequality for i.i.d. random variables. Thus one can
expect sharper convergence rates for estimators of such processes. We remark that majority
of the previous inequalities for temporal dependent processes do not recover Bernstein’s
inequality. For example, under geometric moment contraction with decay coefficient 0 <
ρ < 1 (see Wu and Shao (2004)) and assume |Xi| ≤M , Zhang (2021) provided the following
Bernstein-type inequality,

P
( ∣∣∣∣∣

n∑
i=1

(
Xi − EXi

)∣∣∣∣∣ ≥ z) ≤ exp

{
− z2

4c1(c3n+M2) + 2c2M(log(n))2z

}
,

where c1, c2 are some constants only depending on ρ, and c3 <∞ is a positive constant mea-
suring the temporal dependence. Similarly, Merlevède et al. (2009) obtained a Bernstein-
type inequality for a class of exponentially decay α-mixing and bounded random variables,

P
( ∣∣∣∣∣

n∑
i=1

(
Xi − EXi

)∣∣∣∣∣ ≥ z) ≤ exp

{
− c1z

2

nM2 +M log(n)loglog(n)z

}
,

where c1 > 0 and |Xi| ≤M . Both involve an extra log(n) factor. Our sharp Bernstein-type
inequality is of independent interest. We expect our sharp inequality can be useful for other
high dimensional linear and nonlinear time series problems.

Proof (Proofs of Theorem 1) Without loss of generality, assume |G|1 = 1. Recall Fk =
(. . . , εk−1, εk) and the projection operator Pk(·) = E(·|Fk) − E(·|Fk−1), k ∈ Z. For Xi =
H(. . . , εi−1, εi), where H is some measurable function, we define the coupled version

Xi,{k} = H(. . . , εk−1, ε
′
k, εk+1, . . . , εi).

For x = (x1, . . . , xp)
>, write abs(x) = (|x1|, . . . , |xp|)>. Since g and hj are both Lipschitz

continuous,

|Pkg(Xi)| =
∣∣E(g(Xi)− g(Xi,{k})|Fk)

∣∣
≤ E

(
G>abs(Xi −Xi,{k})

∣∣∣Fk)
≤ E

(
G>H i−kabs(εk − ε′k)

∣∣∣Fk) . (6)
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Let Sn(g) =
∑n

i=1

(
g(Xi) − Eg(Xi)

)
. For k ≤ n, denote ξk = Pk(Sn(g)). Then Sn(g) =∑

k≤n ξk. Note we have

P(Sn(g) ≥ 2z) ≤ P
( ∑
−n<k≤n

ξk ≥ z
)

+ P
( ∑
k≤−n

ξk ≥ z
)

=: I1 + I2.

By Assumption 1 and |G|1 ≤ 1, |H i−k>G|1 ≤ ‖H‖i−k∞ |G|1 ≤ ρi−k. Denote vi = H i>G. Since
|g|∞ ≤M , |Pkg(Xi)| ≤ 2M. Thus by (6) we have

|ξk| ≤
n∑
i=1

|Pkg(Xi)| ≤
n∑

i=k∨1

min
{
v>i−kE(abs(εk − ε′k)

∣∣Fk), 2M}, with |vi|1 ≤ ρi. (7)

For I1, let h∗ := −ρ2(logρ)/(4eM). By Lemma 10 and (7) for any 0 < h ≤ h∗, E(e|ξk|h) <∞.
Note that E(ξk|Fk−1) = 0. Then

E(eξkh|Fk−1) = 1 + E(eξkh − ξkh− 1|Fk−1)

≤ 1 + E
[e|ξk|h − |ξk|h− 1

h2

∣∣∣Fk−1

]
h2, (8)

in view of ex − x ≤ e|x| − |x| for any x. Note that for any fixed x > 0, (etx − tx − 1)/t2 is
increasing in t ∈ (0,∞). By Lemma 10,

E
[e|ξk|h − |ξk|h− 1

h2

∣∣∣Fk−1

]
≤ E

[e|ξk|h∗ − |ξk|h∗ − 1

h∗2

∣∣∣Fk−1

]
≤ (h∗)−2µ2

2(2M)−2 ≤ c3 <∞,
(9)

where c3 = 4e2(−ρ2logρ)−2µ2
2. Hence for any h ≤ h∗, by (8) and (9),

E(eξkh|Fk−1) ≤ 1 + c3h
2. (10)

By Markov’s inequality we have I1 ≤ e−zhE[exp(
∑
−n<k≤n ξkh)]. Let h = min{z(4c3n)−1, h∗},

then by recursively applying (10),

I1 ≤e−zhE
(
e
∑n−1
k=−n+1 ξkhE(eξnh|Fn−1)

)
≤e−zh(1 + c3h

2)2n

≤exp
(
− zh+ 2nc3h

2
)

≤exp
{
− z2

8c3n+ c4Mz

}
, (11)

where the third inequality is due to 1 + x ≤ ex for x > 0, and c4 = 8e/(−ρ2logρ).
For I2, by (7), ‖ξk‖q ≤

∑n
i=1 ρ

i−kµq ≤ ρ1−k(1− ρ)−1µq, for k ≤ 0. Then by Lemma 9,

I2 ≤ z−q
(

(q − 1)
∑
k≤−n

‖ξk‖2q
)q/2

≤ (q − 1)q/2z−q
( ∑
k≤−n

‖ξk‖2q
)q/2

≤ c5ρ
qn/zq = c5e

−qnlog(ρ−1)/zq, (12)
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where c5 = (q − 1)q/2µqq(1− ρ)−3q/2 only depends on ρ, q and µq.
Combining I1 and I2 parts, the desired result follows by noticing z ≤ 2Mn.

If the error vectors εi, i ∈ Z, satisfy stronger moment condition than the existence of
finite qth moment, we expect that a stronger form than (4) exist. Indeed, when εi has
subexponenial tail (Asumption 2(ii)), we are able to obtain an improved Bernstein-type
inequality. Different from the above Theorem 1, in the following Theorem 4, function g can
be unbounded.

Theorem 4 Assume that function g : Rp → R, is Lipschitz continuous with |g(x)−g(y)| ≤∑p
i=1Gi|xi − yi|, for any x, y ∈ Rp. Denote G = (G1, ..., Gp)

> and τ := |G|1. For the VAR
process (2), under Assumption 1 and Assumption 2(ii), we have, for all z ≥ 0,

P
( ∣∣∣∣∣

n∑
i=1

(
g(Xi)− Eg(Xi)

)∣∣∣∣∣ ≥ z) ≤ 2e
− z2

c1τ
2n+c2τz , (13)

where c1 and c2 are positive constants only depending on ρ and µe.

Proof (Proof of Theorem 4) Without loss of generality, assume |G|1 = 1. Similar to
the proof of Theorem 1, let Sn(g) =

∑n
i=1

(
g(Xi) − Eg(Xi)

)
, and ξk = Pk(Sn(g)). Then

Sn(g) =
∑

k≤n ξk, and

P(Sn(g) ≥ 2z) ≤ P
( ∑
−n<k≤n

ξk ≥ z
)

+ P
( ∑
k≤−n

ξk ≥ z
)

=: I1 + I2.

Denote vi = H i>G and ωk =
∑n

i=1∨k vi−k. Since (6) still holds, we have

|ξk| ≤
n∑

i=k∨1

v>i−kE(abs(εk − ε′k)
∣∣Fk) = ω>k E(abs(εk − ε′k)

∣∣Fk). (14)

For I2, k ≤ −n, |wk|1 ≤ ρ1−k/(1 − ρ). Let h∗ := c0(1 − ρ)/ρ. By (8) and (9), for any
0 ≤ h ≤ h∗,

E(eξkh|Fk−1) ≤ 1 + E
[e|ξk|h∗ − |ξk|h∗ − 1

h∗2

∣∣∣Fk−1

]
h2 ≤ 1 +

E(e|ξk|h
∗ − 1|Fk−1)

h∗2
h2. (15)

Let ak = ρ1−k/(1− ρ) and uk = wk/ak, then

E(e|ξk|h
∗ − 1|Fk−1) ≤ E

(
ew
>
k abs(εk−ε′k)h∗ − 1

)
= E

(
ec0u

>
k abs(εk−ε′k)ρ−k − 1

)
.

If f(0) = 0, then E(f(X)) =
∫∞

0 f ′(t)P(X ≥ t)dt. Therefore we further obtain

E(e|ξk|h
∗ − 1|Fk−1) ≤

∫ ∞
0

etρ
−k
ρ−kP(c0u

>
k abs(εk − ε′k) ≥ t)dt

≤ ρ−k
∫ ∞

0
e−t(1−ρ

−k)µ2
edt ≤ ρ−k(1− ρ)−1µ2

e. (16)
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Since 1 + x ≤ ex, by (15) and (16),

E(eξkh|Fk−1) ≤ 1 + ρ−k(1− ρ)−1µ2
e(h
∗)−2h2 ≤ ec3ρ−kh2 , (17)

where c3 = µ2
e(1− ρ)−3ρ2c−2

0 . Recursively applying (17), we can obtain

I2 ≤ e−zh
∗
E
(
e
∑
k≤−n ξkh

∗
)
≤ exp(−zh∗ + c4ρ

nh∗2),

where c4 = c3/(1−ρ). Similar to (11), we can bound the I1 part and we complete the proof.

It should be emphasized that our Bernstein-type concentration inequalities are sharp,
and does not contain any unpleasant extra logarithmic terms. These inequalities are useful
for handling non-Gaussian VAR problems. They also suggest an interesting phenomenon,
that the effect of dependence is captured by the multiplicative constants in the tail bounds.

3. Sparse additive nonlinear VAR models

3.1 The model

Assume that we are given observed time series data X1, ..., Xn ∈ Rp sampled from a dy-
namical system comprising p variables. We are interested in inferring direct influences of
a variable j on other variables k 6= j, 1 ≤ k ≤ p. For example, in linear VAR models,
Xi = GXi−1 + εi, where G is p× p coefficient matrix. The set of influences among variables
can be captured by a network matrix A = (ajk) of size p × p for which each coefficient
ajk = 1 if variables k influences the variable j, and 0 otherwise. For simplicity, we assume
that a first-order stationary model is adequate to encode the temporal dependence of the
system. In other words, we consider nonlinear VAR model (2),

Xi = h(Xi−1) + εi,

where the dynamics is captured by a possibly nonlinear function h.
Linear VAR models (h(Xi−1) = GXi−1) or other parametric models explicitly involve a

matrix that can be interpreted as network matrix, and its estimation (also possibly sparse)
can be directly accomplished, see, for example, Basu and Michailidis (2015) and Hall et al.
(2018). However, for nonlinear models, this becomes a more involved task and estimation
of function h can be very challenge. In this work, we propose to use a new class of high di-
mensional sparse additive non-parametric VAR models. Specifically, we assume an additive
model for each function hj :

hj(x) =

p∑
k=1

hjk(xk), (18)

where hjk : R → R, 1 ≤ j, k ≤ p, x = (x1, ..., xp)
> ∈ Rp. Then, each function hjk gives

a score to the potential influence of variable k on variable j. Our strategy is to use the
empirical mean of the estimated functions hjk in terms of the data X1, ..., Xn:

1

n− 1

n∑
i=2

∣∣∣ĥjk(Xi−1)
∣∣∣ ,

9



Han, Chen and Wu

where ĥjk is estimated by the penalized least squares procedure (19). To provide a final
estimate of A, these coefficients can be sorted and thresholded in some way.

Let Π denote the distribution of Xi and let Πk denote the marginal distribution of Xi,k

for each 1 ≤ k ≤ p. Denote L2(Πk) norm of hjk by

‖hjk‖Πk,2 =

√∫
h2
jk(x)dΠk(x) =

√
Ehjk(Xi,k)2.

Our estimator in the population level is given by the following penalized least squares
problem:

(ĥjk, 1 ≤ j, k ≤ p) := argmin
hjk∈Hjk,1≤j,k≤p

 1

n

n∑
i=1

f(Xi − h(Xi−1)) + λ

p∑
j,k=1

‖hjk‖Πk,2

 , (19)

where h is some additive function in (18), Hjk is a suitable class of functions, f is the
loss function. Empirical version of ‖hjk‖Πk,2 is given by (n−1

∑n
i=1 h

2
jk(Xi−1,k))

1/2. In our
analysis, we let f be the `2 loss function.

Assumption 3 (Basis function) For each 1 ≤ j, k ≤ p, let (ψj,k,l : l = 1, 2, ...) be an or-
thonormal basis such that supx |ψj,k,l(x)| ≤ B. Assume that our function class Hjk satisfies

Hjk =

{
hjk : hjk(·) =

∞∑
l=1

b∗jklψj,k,l(·),
∞∑
l=1

b∗2jkll
2β ≤ C2

}
, 1 ≤ j, k ≤ p,

for some 0 < C <∞, β ≥ 1.

Note that it implies that
∑∞

l=L+1 b
∗2
jkl ≤ C2L−2β. This condition corresponds to the

functional class condition in Ravikumar et al. (2009). Such condition is standard, commonly
imposed for basis expansion. Order β identifies the level of smoothness in the Sobolev space.
It is also possible to set adaptive β for different j, k, although we do not pursue that direction
here.

Let L = Ln be a truncation parameter and h
(L)
jk be an approximation of hjk satisfying

h
(L)
jk (·) =

L∑
l=1

b∗jklψj,k,l(·).

In this setting, h
(L)
jk can be thought as the projection onto the truncated set of basis functions

{ψj,k,1, ..., ψj,k,L}. Then, for 1 ≤ j, k ≤ p,

Xi,j =

p∑
k=1

h
(L)
jk (Xi−1,k) + rij + εij , where rij =

p∑
k=1

[hjk(Xi−1,k)− h
(L)
jk (Xi−1,k)] (20)

is the reminder term, representing the bias of the basis expansion.

10



Nonlinear Vector Autoregressive Models

Define the oracle coefficients in basis expansion and the design matrix as follows

b∗j,k,· = (b∗j,k,1, ..., b
∗
j,k,L)>,

b∗j,·,· = (b∗>j,1,·, ..., b
∗>
j,p,·)

>,

b∗ = (b∗>1,·,·, ..., b
∗>
p,·,·)

>,

ψj,k,·(·) = (ψj,k,1(·), ..., ψj,k,L(·))>,
ψj,·,·(x) = (ψj,1,·(x1), ..., ψj,p,·(xp))

>,

(21)

where x = (x1, ..., xp)
> ∈ Rp. Let ri = (ri1, ..., rip)

>. Then (20) can be rewritten as

Xi =


ψ1,·,·(Xi−1)> 0 0 · · · 0

0 ψ2,·,·(Xi−1)> 0 · · · 0
0 0 ψ3,·,·(Xi−1)> · · · 0
...

...
...

. . .
...

0 0 0 · · · ψp,·,·(Xi−1)>

 b∗ + ri + εi.

:= Ψ(Xi−1)>b∗ + ri + εi. (22)

By (21), for vector b = (bj,k,·)1≤j,k≤p and bj,k,· ∈ RL, define the (2, α) group structure
norm

|b|2,α := ||bj,k,·|2|α =

 p∑
j,k=1

(
L∑
l=1

b2j,k,l

)α/21/α

, (23)

where α ≥ 1. For instance, with the choice α = 1, this norm corresponds to the regularizer
that underlies the group Lasso. For α =∞,

|b|2,∞ := ||bj,k,·|2|∞ = max
1≤j,k≤p

(
L∑
l=1

b2j,k,l

)1/2

.

Then the solution to the optimization problem (19) can be approximately estimated
through

b̂ := argmin
b

 1

n

n∑
i=1

f(Xi −Ψ(Xi−1)>b) + λ

p∑
j,k=1

√√√√ 1

n

n∑
i=1

(ψj,k,·(Xi−1,k)>bj,k,·)2

 . (24)

Note that it can be viewed as a functional version of the group lasso. Standard convexity
theory implies the existence of a minimizer. Using empirical norm

‖f‖Πk,2,n =

(
1

n

n∑
i=1

f2(Xi−1,k)

)1/2

,

the minimizer (24) can be written as

b̂ := argmin
b

 1

n

n∑
i=1

f(Xi −Ψ(Xi−1)>b) + λ

p∑
j,k=1

‖ψ>j,k,·bj,k,·‖Πk,2,n

 . (25)

11
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Lim et al. (2015) introduced operator-valued reproducing kernel-based VAR models.
The advantage of our formulation is that it decouples smoothness and sparsity, and thus
we are able to apply block coordinate descent algorithm (cf. Ravikumar et al. (2009))
to construct the estimator. In the following section, using the Bernstein-type inequalities
developed in Section 2, we provide theoretical properties of our `1 regularized estimators
by assuming that this particular smoother in (25) is being used.

3.2 Asymptotic properties

To facilitate the theoretical analysis, we impose the following assumptions on the functions
hjk (1 ≤ j, k ≤ p) and the basis expansions. For a function f : Rd → R, denote ‖f‖2 :=
(
∫
Rd f

2(x)dx)1/2 and ‖f‖∞ := supx∈Rd |f(x)|.

Assumption 4 There exist constants φU , φL > 0, so that

λmin

{
EΨ(Xi−1)Ψ(Xi−1)>

}
≥ φL, (26)

and

max
1≤j,k≤p

λmax

{
Eψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)

>
}
≤ φU . (27)

Assumption 4 is similar to Assumption 3.3 in Fan et al. (2016) on the basis functions.
When in the population level EΨ(Xi−1)Ψ(Xi−1)> is well-conditioned, we provide the fol-
lowing proposition in relation to the sample version of the minimum restricted eigenvalue
and maximum eigenvalue. Note that L � n. Then the sample version of the maximum
eigenvalue (27) can follow from the strong law of large numbers.

Proposition 5 Suppose Assumptions 1 and 2(ii) hold. Assume supx |ψj,k,l(x)| ≤ B for
any 1 ≤ j, k ≤ p, 1 ≤ l ≤ L.

(i). Assume that (26) hold and that for some constant c > 0, for all w ∈ Rp2L,

E(w>Ψ(Xi)Ψ(Xi)
>w)2 ≤ c

(
w>E(Ψ(Xi)Ψ(Xi)

>)w
)2
.

Then, with probability at least 1− p−c1 − p2e−c2n/log(n), for all u ∈ RpL with |u|2 = 1,

min
1≤j≤p

1

n

n∑
i=1

u>ψj,·,·(Xi)ψj,·,·(Xi)
>u ≥ φL

2
− 1

n
− c3

log(n)log(pL) · |u|21
n

, (28)

where c1, c2, c3 > 0 are constants independent of n, p, L.

(ii). Assume that (27) hold. Then, with probability at least 1 − p−c4 − e−c5n/log(n), for
all u ∈ RL with |u|2 = 1,

max
1≤j,k≤p

1

n

n∑
i=1

u>ψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)
>u ≤ φU + c6L

√
log(n)(logp+ logL)

n
, (29)

where c4, c5, c6 > 0 are constants independent of n, p, L.

12
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Assumption 5 Let S := {(j, k) : hjk 6≡ 0, 1 ≤ j, k ≤ p} and Sj := {k : hjk 6≡ 0, 1 ≤
k ≤ p}, 1 ≤ j ≤ p. Assume that nonzero indices s0 := max1≤j≤p

∑p
k=1 1{hjk 6≡0} =

max1≤j≤pCard(Sj) = o(p), and s :=
∑p

j,k=1 1{hjk 6≡0}=Card(S) = o(p2).

Assumption 5 imposes a sparsity condition on the nonlinear functions. Structural spar-
sity condition is often used in high dimensional setting, for example, Cai and Liu (2011) in
covariance matrix estimation.

The following Proposition 6 provides an upper bound of the reminder part |ri|∞ in terms
of smoothness level β, the number of the basis functions L, and sparsity level s0.

Proposition 6 Under Assumptions 3 and 5, we have

|ri|∞ ≤ BC(2β − 1)−1s0L
1/2−β.

Formally, we have the following asymptotic properties for the `1 regularized estimators.
Theorem 7 shows how the rate of convergence of b̂ − b∗ and the errors of the estimated
functions ĥjk depend on the sparsity of functions, basis expansions, the dependence strength
of the processes and the moment condition.

Theorem 7 Suppose Assumptions 1, 2(ii), 3, 4 and 5 hold. Let b̂ be the corresponding
LASSO solution given in the optimization problem (24). Consider the estimator

ĥjk(x) =

L∑
l=1

ψj,k,l(x)b̂j,k,l, 1 ≤ j, k ≤ p. (30)

Assume that there exists a constant c1 > 0, such that for all u ∈ Rp2L,

E(u>Ψ(Xi)Ψ(Xi)
>u)2 ≤ c1

(
u>E(Ψ(Xi)Ψ(Xi)

>)u
)2
.

Assume that

λ ≥ c2(

√
Llog(pL)

n
+ s0L

1−β), (31)

for some c2 > 0. Also suppose that

n ≥ c3s0L · log(n)log(pL) + c3L
2 · log(n)log(pL)

for some sufficiently large constant c3. We have, with probability approaching one (as n, p→
∞),

|b̂− b∗|2 ≤ c4

√
sλ, (32)

p∑
j=1

p∑
k=1

‖ĥjk − hjk‖22 ≤ c5sλ
2 + c5sL

−2β, (33)

where c2, c3 > 0 are constants depending on ρ and µe.

13
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Note that as s ≤ s0p, (32) and (33) imply that

max
1≤j≤p

|b̂j,·,· − b∗j,·,·|2 ≤ c4
√
s0λ,

max
1≤j≤p

p∑
k=1

‖ĥjk − hjk‖22 ≤ c5s0λ
2 + c5s0L

−2β,

where b∗ and b∗j,·,· is defined in (21) and (22). The quantity ρ indicate the strength of
dependence of the processes, and the constant µe correspond to the moment condition.
Theorem 7 indicates the dependence measures of the processes and the moment condition
do not affect the convergence rate if both Assumptions 1 and 2(ii) hold with ρ ≤ ρ0 < 1
and ρ0 is a constant. Besides, the second term in (33) reveals the bias of basis expansion in
the estimated functions. Theorem 7 implies that p can be as large as en

c
for some constant

0 < c < 1 if εi has finite exponential moments, and the power constant c is related to the
truncated number L of basis expansion.

It is interesting to compare the two terms in the requirement of λ (31). In the case with

relative low dimensional log(p) . s2
0nL

1−2β and low basis number L . s
2/(2β−1)
0 (n/logn)1/(2β−1),

the part of basis expansion bias, which corresponds to s0L
1−β, dominates. On the other

hand, if the dimension p is large such that log(p) & s2
0nL

1−2β or basis number L is large with

L & s
2/(2β−1)
0 (n/logn)1/(2β−1), then the dominating term is the first part (n−1Llog(pL))1/2.

The setting in our Theorem 7 is very general as it allows a wide class of non sub-Gaussian
nonlinear VAR processes. Han et al. (2015) and Basu and Michailidis (2015) considered
the special case of the estimation of transition matrices of linear VAR model under the
assumption that errors εi are i.i.d. Gaussian. Our setting also allows a large number of
parameters in the context that the dimension p can be much larger than sample size n.
Moreover, (24) leads to sparse solution b̂, that is b̂j,k,· = 0 for some 1 ≤ j, k ≤ p. By

checking non-zero vectors of b̂j,k,· = 0, 1 ≤ j, k ≤ p, we can construct the network matrix
A. A theory-free principle was advocated in Sims (1980) for inferring economic relations
between variables of linear VARs. Theorem 8 provides theoretical guarantee for model
selection consistency.

Instead of Assumptions 4, we shall consider model selection consistency under the fol-
lowing condition. To simplify the notation, let ΨSj (Xi) = (ψj,k,·(Xi,k)

>, k ∈ Sj), be a vector

in RL·Card(Sj), where ψj,k,· is defined in (21). Denote

ΨS(Xi) =


ΨS1(Xi)

> 0 0 · · · 0
0 ΨS2(Xi)

> 0 · · · 0
0 0 ΨS3(Xi)

> · · · 0
...

...
...

. . .
...

0 0 0 · · · ΨSp(Xi)
>

 .
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Assumption 6 There are some constants φmax, φmin > 0, 0 < δ ≤ 1, so that with probabil-
ity approaching one (as n, p→∞), we have

λmin

{ 1

n

n∑
i=1

ΨS(Xi−1)ΨS(Xi−1)>
}
≥ φmin > 0, (34)

λmax

{ 1

n

n∑
i=1

ΨS(Xi−1)ΨS(Xi−1)>
}
≤ φmax <∞, (35)

and

max
1≤j≤p

max
k∈Scj

∥∥∥∥∥∥
(

1

n

n∑
i=1

ψj,k,·(Xi−1,k)ΨSj (Xi−1)>

)(
1

n

n∑
l=1

ΨSj (Xl−1)ΨSj (Xl−1)>

)−1
∥∥∥∥∥∥

2

≤

√
φmin

φmax
· 1− δ
√
s0
. (36)

This assumption corresponds to the condition of Ravikumar et al. (2009). Similar
to Assumption 4, (34) and (35) are also standard, and are commonly imposed for high-
dimensional regression analysis. Besides, (36) relates to the incoherence condition, see e.g.
Wainwright (2009).

In Theorem 8, we show that, under certain conditions, our method recovers the sparsity
pattern asymptotically. Recall S := {(j, k) : hjk 6≡ 0, 1 ≤ j, k ≤ p}. Then S = {(j, k) :

b∗j,k,· 6= 0, 1 ≤ j, k ≤ p}. Let Ŝn := {(j, k) : b̂j,k,· 6= 0, 1 ≤ j, k ≤ p}.

Theorem 8 Suppose Assumptions 1, 2(ii), 3, 5 and 6 hold. Let b̂ be the corresponding
LASSO solution given in the optimization problem (24). Let β > 3/2. Assume that

s0L
2 · log(pL)

n
+ s0L

1−2β/3 → 0, (37)

and

λ
√
s0L+ λ−1

√
Llog(n)

n
+ λ−1s0L

1−β → 0. (38)

Then the solution b̂ to problem (24) is unique and satisfies Ŝn = S, with probability ap-
proaching one (as n, p→∞).

We set elements of estimated network matrix âjk = 1 if b̂j,k,· 6= 0 (ignoring the sign of

b̂j,k,·), otherwise, set âjk = 0. As the estimated network matrix Â = (âjk) is not symmetric,
it is an adjacency matrix for a directed graph. Our Theorem 8 provides model selection
consistency for the estimated network matrix Â, which is also proposed in section 3.1.
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4. Simulation Studies

In this section, we shall evaluate the numerical performance of the proposed estimation
procedures of nonlinear VAR models.

We design three different patterns of the binary transition matrix (network matrix, see
Section 3.1) A: random, band, cluster. Typical realizations of these patterns are illustrated
in Figure 1. The pattern “cluster” has block diagonal structure, where each block is of
dimension 10 × 10 and satisfies the pattern “random”. In each dimension j, 1 ≤ j ≤ p,
we randomly assign 5 nonzero functions, according to the pattern of the transition matrix.
The relevant nonzero component functions are given by

f1(x) = 0.2x,

f2(x) = −0.15 sin(1.5x),

f3(x) = −0.5Φ(x, 0.5, 1),

f4(x) = 0.2xe−0.5x2 ,

f5(x) = 0.15log(|x|+ 2),

where Φ(·, 0.5, 1) is the Gaussian probability distribution function with mean 0.5 and stan-
dard deviation 1. In other words, for each j with 1 ≤ j ≤ p, we randomly select 5 functions
hjk (1 ≤ k ≤ p) to be the above nonzero functions. The rest p − 5 functions of hjk
(1 ≤ k ≤ p) are all zeros. Elementary calculation shows that this nonlinear VAR process is
stable and satisfies Assumption 1. In order to ensure reasonable signal to noise ratio, the
error processes εt are generated from 0.2N(0, 1).

In all the conducted experiments, we assess the model selection performance of our
model using the area under the receiver operating characteristic curve (AUROC) and the
area under the Precison-Recall curve (AUPR) ignoring the sign (positive negative influence),
where the ROC curve is created by plotting the true positive rate (TPR) against the false
positive rate (FPR) and the precision-recall curve is a plot of the precision against the
recall. Define TPR, FPR, precision and recall as follows

TPR = recall =
TP

TP + FN
, FPR =

FP

TN + FP
, Precision =

TP

TP + FP
.

Here TP and TN stand for true positives and true negatives, respectively, and FP and
FN stand for false positives/negatives. We choose a set of data dimensions p = 20, 50, 100
while the sample size is n = 50, 100, 200, 500, respectively. The empirical values reported in
Tables 1 are averages over 1000 replications.

It can be seen from Table 1 that the proposed estimation procedure of nonlinear VAR
model performs fairly well as reflected in both AUROC and AUPR. In particular, when the
sample size is moderate (n ≥ 100), our method provides pretty good AUROC in all cases.
As expected, when the sample size n increases, our method performs better. And both
AUROC and AUPR decreases as the dimension p increase. Besides, our proposed method
makes no significant differences in terms of 3 patterns of transition matrix.
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(a) random (b) band (c) cluster

Figure 1: Three different network matrix patterns used in the simulation studies. Here gray
points represent the zero entries and black points represent nonzero entries.

Table 1: Model selection performance of the proposed nonlinear VAR method with three
different patterns of the transition matrix, “random”, “band”, “cluster”, based on
1000 replications.

p AUROC AUPR
n 50 100 200 500 50 100 200 500

Pattern “random”

20 0.633 0.744 0.851 0.924 0.443 0.651 0.856 0.937
50 0.611 0.720 0.842 0.920 0.230 0.458 0.753 0.904
100 0.591 0.696 0.830 0.918 0.132 0.320 0.666 0.883

Pattern “band”

20 0.647 0.753 0.858 0.928 0.469 0.681 0.864 0.938
50 0.610 0.720 0.841 0.920 0.234 0.464 0.758 0.905
100 0.592 0.698 0.830 0.918 0.143 0.339 0.672 0.881

Pattern “cluster”

20 0.642 0.746 0.855 0.922 0.464 0.667 0.861 0.933
50 0.609 0.718 0.839 0.920 0.231 0.454 0.744 0.905
100 0.591 0.696 0.827 0.918 0.138 0.328 0.661 0.883
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5. Real Data Analysis

We now apply our nonlinear VAR model to the analysis of a real biological gene regulatory
network time series expression data. The network is an E. coli SOS DNA repair system,
which has been well studied in biology, see e.g, Ronen et al. (2002). The main function of
the SOS signaling pathway is to regulate cellular immunity and repair DNA damage. We
consider an eight gene network, part of the SOS DNA repair network in the bacteria E.
coli. The time series gene expression data set of the network was collected by Ronen et al.
(2002). The data are kinetics of 8 genes, that is, lexA, recA, ruvA, polB, umuDC, uvrA,
uvrD, uvrY, where lexA and recA are the key genes in the pathway. The 8 genes were
measured at 50 instants which are evenly spaced by 6 min intervals.

We compare the performance of our method with the Lasso regularized linear VAR
method (Basu and Michailidis (2015)). The tuning parameter λ in both methods are chosen
by time series cross-validation procedure (see Han et al. (2015)). Figure 2 represents the
bacterial SOS DNA repair system. Figure 3 shows the real SOS DNA repair network,
which contains 9 edges. Figures 4 and 5 show the inferred gene regulatory networks using
our nonlinear VAR model and the `1 regularized linear VAR model, respectively. In Figure
4, one can see that our method finds 6 out of the 9 edges in the target network and
identifies lexA as the hub gene for this network. Our method identifies most interactions
except lexA→ruvA, lexA→uvrY and recA→lexA. In comparison, in the Figure 5, the `1
regularized linear VAR model recognizes only 4 out of the 9 true edges, and predicts a
wrong edge. Furthermore, our proposed method gives the area under ROC curve 0.8116
and the area under Precison-Recall curve 0.6836. While, the `1 regularized linear VAR
model gives AUROC 0.7222 and AUPR 0.6036. In summary, our proposed method has a
better performance than the regularized linear VAR model on the SOS DNA repair network,
although none of these two methods can faithfully recover all of the edges. This phenomenon
also confirms that there exists nonlinear dynamics in the gene regulatory networks.

Figure 2: The bacterial SOS DNA repair system
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lexA

polB

recA

ruvA

umuDC

uvrA

uvrD

uvrY

Figure 3: The target SOS DNA repair network

lexA

polB

recA

ruvA

umuDC

uvrA

uvrD

uvrY

Figure 4: Reconstruction of SOS DNA repair network by nonlinear VAR model
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Figure 5: Reconstruction of SOS DNA repair network by linear VAR model

6. Appendix

Let Fk = (. . . , εk−1, εk), Fnk = {εk, . . . , εn}, and E0(X) = X − EX. Define projection
operator Pk(·) = E(·|Fk) − E(·|Fk−1), k ∈ Z. Let (ε′k)k∈Z be an i.i.d. copy of (εk)k∈Z. For
any Xi = H(. . . , εi−1, εi), where H is a measurable function, we define the coupled version
Xi,{k} = H(. . . , εk−1, ε

′
k, εk+1, . . . , εi). If k > i, then Xi,{k} = Xi.

Lemma 9 (Burkholder (1988), Rio (2009)) Let q > 1, q′ = min{q, 2}. Let DT =∑T
t=1 ξt, where ξt ∈ Lq are martingale differences. Then

‖DT ‖q
′
q ≤ Kq′

q

T∑
t=1

‖ξt‖q
′
q , where Kq = max

{
(q − 1)−1,

√
q − 1

}
.

Lemma 10 Let ε ∈ Rp be a random vector with non-negative entries, satisfying Assumption
2(i) with µq < ∞, for some q ≥ 2. For non-negative vectors vi ∈ Rp, assume |vi|1 ≤ ρi

where ρ < 1. Consider

X :=
∞∑
i=0

min
{
v>i ε,M

}
.

Take c0 = −ρ2logρ/(2e). Then for any c ≤ c0/M , E(ecX) exists and

Eec0X/M − E(c0X/M)− 1 ≤ µ2
2M
−2 <∞.
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Proof Note we have the decomposition

X = M

∞∑
i=0

1v>i ε≥M
+

∞∑
i=0

v>i ε1v>i ε<M
=: I1 + I2.

For I1 part, by Markov’s inequality,

P(v>i ε ≥M) ≤M−2‖v>i ε‖22 ≤ ρ2iµ2
2M
−2.

Hence for m ≥ 1, we have

E|I1|m ≤Mm
( ∞∑
i=0

P(v>i ε ≥M)1/m
)m
≤Mm

(
µ

2/m
2 M−2/m

∞∑
i=0

ρ2i/m
)m
≤ µ2

2(1− ρ2/m)−mMm−2.

Since for any m ≥ 1,

1− ρ2/m ≥ (1− ρ2)/m ≥ −2ρ2log(ρ)/m, (39)

we further obtain

E|I1|m ≤ µ2
2(−2ρ2log(ρ)/m)−mMm−2.

Choose c1,M = −ρ2log(ρ)/(eM), then by m! ≥ (2π)1/2mm+1/2e−m (Robbins (1955)), we
have ∑

m≥2

E((c1,M I1)m)

m!
≤ 1

2
µ2

2M
−2.

For I2 part, for any m ≥ 2,

E|I2|m ≤

( ∞∑
i=0

‖v>i ε1v>i ε<M‖m

)m
≤

( ∞∑
i=0

(Mm−2E|v>i ε|2)1/m

)m
≤ µ2

2

(
M1−2/m

∞∑
i=0

ρiq/m
)m

≤ µ2
2(−2ρ2log(ρ)/m)−mMm−2,

where the last inequality is by (39). Therefore

∑
m≥2

E((c1,M I2)m)

m!
≤ 1

2
µ2

2M
−2 <∞,

We complete the proof by combining the two parts and setting c0 = Mc1,M/2,

Eec0X/M − 1− E(c0X/M) =
∑
m≥2

E((c0X/M)m)

m!
≤
∑
m≥2

E((c1,M I1)m)

m!
+
∑
m≥2

E((c1,M I2)m)

m!
≤ µ2

2M
−2.
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Proof [Proof of Proposition 6] Note that since basis functions are orthonormal, ‖hjk‖2 =
(
∑∞

l=1 b
∗2
jkl)

1/2. Since basis functions are bounded by B, by Assumption 3, we have

‖hjk − h
(L)
jk ‖∞ ≤

∑
l≥L+1

|b∗jkl|B = B
∑
l≥L+1

|b∗jkl|lβ

lβ

≤ B
√ ∑
l≥L+1

b∗2jkll
2β

√ ∑
l≥L+1

l−2β

≤ BC(2β − 1)−1L1/2−β.

Hence, as s0 = max1≤j≤pCard(Sj) with Sj := {k : hjk 6= 0, 1 ≤ k ≤ p},

|ri|∞ ≤
p∑

k=1

‖hjk − h
(L)
jk ‖∞ ≤ BC(2β − 1)−1s0L

1/2−β.

Then we obtain the desired result.

Proof [Proof of Proposition 5] We first prove part (i). By (26), we have, for any u ∈ RpL
with |u|2 = 1,

Eu>ψj,·,·(Xi)ψj,·,·(Xi)
>u ≥ φL.

Let m = 4(−logρ)−1log(n). Recall Fnk = {εk, . . . , εn}. By Lemma 11, we have, for any
1 ≤ j ≤ p, with probability at least 1−mp−c1/12− 2mp2Le−3n/(10m), for any u ∈ RpL,

1

n

n∑
i=1

u>E
(
ψj,·,·(Xi)ψj,·,·(Xi)

>|Fni−m+1

)
u ≥ 1

2
u>Eψj,·,·(Xi)ψj,·,·(Xi)

>u− c2log(n)log(pL)

n
|u|21 .

Note that L = o(n). Let z = 1 in Lemma 12, we can obtain, with probability at least
1−mp−c1/12− 2mp2Le−3n/(10m) − e−c3n, for any u ∈ RpL,

1

n

n∑
i=1

u>
(
ψj,·,·(Xi)ψj,·,·(Xi)

>)u ≥ 1

2
u>Eψj,·,·(Xi)ψj,·,·(Xi)

>u− c2log(n)log(pL)

n
|u|21 −

1

n
|u|22.

Then (28) follows.
For part (ii), denote Ωj,k = E(ψj,k,·(Xi,k)ψj,k,·(Xi,k)

>). For m = o(n), let N = [(n −
1)/m] and N = {1,m + 1, 2m + 1, ..., (N − 1)m + 1}. Then there exists constant c3 > 0
such that for any 1 ≤ l1, l2 ≤ L, z > 0, we have

P

(∣∣∣ 1

N

∑
i∈N

E
(

(ψj,k,·(Xi,k)ψj,k,·(Xi,k)
>)l1,l2 |Fni−m+1

)
− Ωj,k,l1,l2

∣∣∣ ≥ z) ≤ 2exp
{
− c3Nz

2
}
.

Therefore with probability at least 1− 2L2exp{−c3Nz
2}, for any u ∈ RL with |u|2 = 1,∣∣∣ 1

N

∑
i∈N

E
(
u>ψj,k,·(Xi,k)ψj,k,·(Xi,k)

>u|Fni−m+1

)
− u>Ωj,ku

∣∣∣ ≤ Lz.
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Take z = c4(log(p) + log(L))/N some constant c4 large enough. Then we have with proba-
bility greater than 1−m(pL)−c4 , for any u ∈ RL, |u|2 = 1, 1 ≤ j, k ≤ p,

1

n

n∑
i=1

E
(
u>ψj,k,·(Xi,k)ψj,k,·(Xi,k)

>u|Fni−m+1

)
≤ φU + c5L

√
log(p) + log(L)

N
.

Then (29) follows by combining above and Lemma 12 with z = 1 andm = 4(−logρ)−1log(n).

For m = o(n), denote N = [(n− 1)/m] and N = {1,m+ 1, 2m+ 1, ..., (N − 1)m+ 1}.

Lemma 11 Consider the VAR process (2), suppose Assumptions 1 and 2(ii) hold. Assume
that there exists constant c > 0, such that for all u ∈ Rp2L, E[(u>Ψ(Xi)Ψ(Xi)

>u)2] ≤
c
(
u>E(Ψ(Xi)Ψ(Xi)

>)u
)2

. Let N ≥ Clog(p2L), where C > 0 is a sufficiently large constant.

Then, we have, with probability at least 1− p−c1/12− 2p2Le−3N/10,

∀u ∈ Rp
2L,

1

N

∑
i∈N

u>E
(
Ψ(Xi)Ψ(Xi)

>|Fni−m+1

)
u ≥ 1

2
u>EΨ(Xi)Ψ(Xi)

>u− c2log(p2L)

N
|u|21 ,

where c1 > 0 is a sufficiently large constant and c2 depends only on c and B.

Proof Recall for any 1 ≤ j, k ≤ p, 1 ≤ l ≤ L, supx |ψjkl(x)| ≤ B, some B ≥ 1, and
Fnk = {εk, . . . , εn}. Denote Σ = E(Ψ(Xi)Ψ(Xi)

>) and

Σ̃N = N−1
∑
i∈N

E
(
Ψ(Xi)Ψ(Xi)

>|Fni−m+1

)
.

Let Σ̃diag be the diagonal of Σ̃N . Note that E
(
Ψ(Xi)Ψ(Xi)

>|Fni−m+1

)
= E

(
Ψ(Xi)Ψ(Xi)

>|F ii−m+1

)
are independent for all i ∈ N . By Jensen’s inequality,

E
[(
E
(
u>Ψ(Xi)Ψ(Xi)

>u|Fni−m+1

))2] ≤ E[(u>Ψ(Xi)Ψ(Xi)
>u)2] ≤ c

(
u>E(Ψ(Xi)Ψ(Xi)

>)u
)2
.

Then, employing similar arguments as in the proof of Lemmas 5.1 and 5.2 in Oliveira (2013),
we can obtain, for N ≥ 1568c(c3 + 1)log(p2L) and c3 > 0,

P
(
∀u ∈ Rp

2L, u>Σ̃Nu ≥
1

2
u>Σu− 1568c(c3 + 1)log(p2L)

N

∣∣∣Σ̃1/2
diagu

∣∣∣2
1

)
≥ 1− 1

12
p−c3 . (40)

Since for any 1 ≤ j, k ≤ p, 1 ≤ l ≤ L, |ψjkl|∞ ≤ B, then, by Bernstein’s inequality, we have,

P

(∣∣∣∣∣ 1

N

∑
i∈N

(ψjkl(Xik)
2 − Eψjkl(Xik)

2)

∣∣∣∣∣ ≥ z
)
≤ 2exp

(
− Nz2

2B4 + 4B2z/3

)
.

Hence, we have

P

(
max

1≤j,k≤p,1≤l≤L

∣∣∣∣∣ 1

N

∑
i∈N

ψjkl(Xik)
2

∣∣∣∣∣ ≥ 2B2

)
≤ 2p2Lexp (−10N/3) .
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Combining the above inequality with (40), it follows that, with probability at least 1 −
p−c3/12− 2p2Le−3N/10, for any u ∈ Rp2L,

u>Σ̃Nu ≥
1

2
u>Σu− 3136B2c(c3 + 1)log(p2L)

N
|u|21 .

Lemma 12 (m-approximation) Considering the VAR process (2), suppose Assumptions 1
and 2 (ii) hold. Let zρ−m/(s0L) > Cn, where C > 0 is a sufficient large constant. For any
1 ≤ j ≤ p, we have

P

(
sup

|u|2=1, |u|21=s0L

∣∣∣ n∑
i=1

u>
[
ψj,·,·(Xi)ψj,·,·(Xi)

> − E
(
ψj,·,·(Xi)ψj,·,·(Xi)

>|Fni−m+1

)]
u
∣∣∣ ≥ z) ≤ s2

0L
2e−cn,

for some constant c > 0.

Proof For matrix A, denote by Ak1,k2 the (k1, k2)th entry of A, and let Ei−m+1(·) =
(·)− E(·|Fni−m+1), then we have

P

(
sup

|u|2=1, |u|21=s0L

∣∣∣u> n∑
i=1

Ei−m+1

(
ψj,·,·(Xi)ψj,·,·(Xi)

>)u∣∣∣ ≥ z)

≤P

(
sup

|u|2=1, |u|21=s0L

|u|21 max
1≤k1,k2≤p

∣∣∣ n∑
i=1

Ei−m+1

(
(ψj,·,·(Xi)ψj,·,·(Xi)

>)k1,k2
)
1uk1 ,uk2 6=0

∣∣∣ ≥ z)

≤s2
0L

2 max
1≤k1,k2≤p

P

(∣∣∣ n∑
i=1

Ei−m+1

(
(ψj,·,·(Xi)ψj,·,·(Xi)

>)k1,k2
)∣∣∣ ≥ z/(s0L)

)
.

By construction, for any indices i, j, k1, k2, there exist functions

φ1, φ2 ∈ {f : Rp → R|f(x) = ψj,k,l(xi) for some 1 ≤ j, k ≤ p, 1 ≤ l ≤ L, 1 ≤ i ≤ p}

such that (ψj,·,·(Xi)ψj,·,·(Xi)
>)k1,k2 = φ1(Xi)φ2(Xi). Since function ψj,k,l satisfies conditions

in Lemma 13, we complete the proof.

Lemma 13 Consider the VAR process (2), suppose Assumption 1 and 2(ii) hold. Assume
functions φ1, φ2 : Rp → R are both bounded with |φi|∞ ≤ B, i = 1, 2. For any x, y ∈ Rp,
assume |φi(x)− φi(y)| ≤ β>|x− y| =

∑p
j=1 βj |xj − yj |, where |β|1 ≤ 1. Then we have

P
(∣∣ n∑

i=1

[
φ1(Xi)φ2(Xi)− E

(
φ1(Xi)φ2(Xi)|Fni−m+1

)]∣∣ ≥ z) ≤ e−cmin{n,zρ−m,z2ρ−2m/n}, (41)

where constant c only depends on ρ, µ2, µe and B.
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Proof Recall Fnk = {εk, . . . , εn}. Denote

Sn =
n∑
i=1

[
φ1(Xi)φ2(Xi)− E

(
φ1(Xi)φ2(Xi)|Fni−m+1

)]
and ξk = E(Sn|Fnk−1)− E(Sn|Fnk ).

Then Sn =
∑

k≤n−m+1 ξk and

|ξk| ≤
n∑

i=(k+m−1)∨1

E
(
|φ1(Xi,{k})− φ1(Xi)||φ2(Xi)|

∣∣Fnk )

+
n∑

i=(k+m−1)∨1

E
(
|φ1(Xi,{k})||φ2(Xi,{k})− φ2(Xi)|

∣∣Fnk ) =: ξ1k + ξ2k. (42)

Since |φ1(Xi,{k})− φ1(Xi)| ≤ β>H i−kabs(ε′k − εk) and |φ1|∞ ≤ B, we have

ξ1k ≤
n∑

i=(k+m−1)∨1

B · E
(
β>H i−kabs(ε′k − εk)

∣∣Fnk ).
A similar bound can be derived for ξ2k. Hence

|ξk| ≤ E
(
ω>k abs(ε′k − εk)|Fnk

)
, where ω>k = 2Bβ>

n∑
i=(k+m−1)∨1

H i−k.

Then |ωk|1 ≤ 2B(1 − ρ)−1ρm−1 for k > −n and |ωk|1 ≤ 2B(1 − ρ)−1ρ1−k if k ≤ −n. For
k ≤ −n, since ξk are martingale differences, by Burkholder’s inequality (Lemma 9), we
have, for any q ≥ 2,∥∥∥ ∑

k≤−n
ξk

∥∥∥2

q
≤ (q − 1)q/2

( ∑
k≤−n

‖ξk‖2q
)q/2

≤ (q − 1)q/2(2B)qµqq(1− ρ)−q(1− ρ2)−q/2ρqρnq.

Thus by Markov’s inequality

P
(∣∣ ∑

k≤−n
ξk
∣∣ ≥ z) ≤ z−24B2(1− ρ)−2(1− ρ2)−1µ2

2ρ
2 · ρ2n ≤ z−24B2(1− ρ)−4µ2

2ρ
2 · e−(−2logρ)n.

For k > −n, let h∗ = (2B)−1(1− ρ)ρc0 and ξ′k = ξk/ρ
m Then Eexp(h∗|ξ′k|) ≤ 2µe <∞. By

(8), (9) and (10), we have for any h ≤ h∗,

E(eξ
′
kh|Fk−1) ≤ 1 + c1h

2,

where c1 = 2µeh
∗−2. Similar as (11), we have

P
(∣∣ n∑

k=−n+1

ξk/ρ
m
∣∣ ≥ z) ≤ inf

h≤h∗
exp
(
− zh+ 2c1nh

2
)
≤ exp

{
− z2/(c2z + c3n)

}
,

for some constants c2, c3 depending on ρ, µ2, µe and B. Then the desired result follows.
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Proof [Proof of Theorem 7] Let

F (b) =
1

n

n∑
i=1

(Xi −Ψ(Xi−1)>b)2 + λ

p∑
j,k=1

√√√√ 1

n

n∑
i=1

(ψj,k,·(Xi−1,k)>bj,k,·)2.

Define

∇n =
1

n

n∑
i=1

Ψ(Xi−1)(Xi −Ψ(Xi−1)>b∗). (43)

Recall the definition of | · |2,α in (23). Then

|∇n|2,∞ =
∣∣ 1
n

n∑
i=1

Ψ(Xi−1)(εi + ri)
∣∣
2,∞

≤ 1

n

n∑
i=1

L1/2
∣∣Ψ(Xi−1)

∣∣
∞|ri|∞ +

∣∣ 1
n

n∑
i=1

Ψ(Xi−1)εi
∣∣
2,∞

:= I1 + I2. (44)

For I1 part, by (22) and Proposition 6, we have |Ψ(Xi−1)|∞ ≤ B and thus I1 ≤ B2C(2β −
1)−1s0L

1−β. For I2 part, by Lemma 14, with probability at least 1−(pL)−c
′
, I2 ≤ c

√
Llog(pL)/n,

for some constants c, c′ > 0.
For c2 ≥ 12(c+ CB2(2β − 1)−1)/φL, by Proposition 5, we have

λ ≥ (12/φL)
(
c
√
Llog(pL)/n+B2C(2β − 1)−1s0L

1−β) ≥ 12|∇n|2,∞/φL.

Let

φ̃L =
φL
2
− 1

n
− c4(s0L)log(n)log(pL)

n
,

and

φ̃U = φU + c5L

√
log(n)log(pL)

n
,

where |u|1 = s0L in Proposition 5, and c4, c5 are the constants in (28) and (29). Then,
for n ≥ c3(s0L)log(n)log(pL) + c3L

2log(n)log(pL) with sufficient large constant c3 > 0, we
have

φ̃L ≥
φL
3

and φ̃U ≤ 2φU .

Denote

Σj,k =
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)
> and Jn =

1

n

n∑
i=1

Ψ(Xi−1)Ψ(Xi−1)>.
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Hence, by Assumption 4 and Proposition 5, with probability approaching one, we have

F (b)− F (b∗) =− 2∇>n (b− b∗) + (b− b∗)>Jn(b− b∗) + λ

p∑
j,k=1

(
|Σ1/2
j,k bj,k,·|2 − |Σ

1/2
j,k b

∗
j,k,·|2

)
≥− 2|∇n|2,∞|b− b∗|2,1 + φ̃L|b− b∗|22 + λ

∑
j,k/∈S

|Σ1/2
j,k bj,k,·|2 − λ

∑
j,k∈S

|Σ1/2
j,k (bj,k,· − b∗j,k,·)|2

≥φ̃L|b− b∗|22 − λ(φL/6 + φ̃U )
∑
j,k∈S

|bj,k,· − b∗j,k,·|2,

≥(φL/3)|b− b∗|22 − λ(φL/6 + 2φU )
∑
j,k∈S

|bj,k,· − b∗j,k,·|2.

Since Card(S) = |S|0 = s, we have

∑
j,k∈S

|bj,k,· − b∗j,k,·|2 ≤
√
s

√∑
j,k∈S

|bj,k,· − b∗j,k,·|22 ≤ s
1/2|b− b∗|2.

Hence |b̂− b∗|2 ≤ (1/2 + 6φU/φL)
√
sλ in view of F (b̂)− F (b∗) ≤ 0.

Furthermore,

p∑
j,k=1

‖ĥjk − hjk‖22 ≤
√

2

p∑
j,k=1

∥∥∥∥∥
L∑
l=1

(b̂j,k,l − b∗j,k,l)ψj,k,l

∥∥∥∥∥
2

2

+
√

2

p∑
j,k=1

∥∥∥∥∥
∞∑

l=L+1

b∗j,k,lψj,k,l

∥∥∥∥∥
2

2

.

Since (ψj,k,l)j,k,l are orthonormal basis functions, we have

p∑
j,k=1

‖ĥjk − hjk‖22 ≤
√

2

p∑
j,k=1

L∑
l=1

(b̂j,k,l − b∗j,k,l)2 +
√

2

p∑
j,k=1

∞∑
l=L+1

b∗2j,k,l

. sλ2 +

p∑
j,k=1

∞∑
l=L+1

b∗2j,k,ll
2βl−2β

. sλ2 + sL−2β,

which also implies (33).

Lemma 14 For function g : Rp → R, assume |g|∞ ≤ B. Under Assumption 2(ii), we have

P
(∣∣ 1
n

n∑
i=1

g(Xi−1)εij
∣∣ ≥ z) ≤ {2exp

(
− nz2

4c1

)
, if z ≤ 2c0c1B

−1,

2exp
(
− c0nz/(2B)

)
, if z > 2c0c1B

−1,
(45)

where c1 = µec
−2
0 B2.
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Proof Let ξi = g(Xi−1)εij . Then ξi, 1 ≤ i ≤ n, are martingale differences with respect
to Fi. Let h∗ = c0/B. By Assumption 2 (ii), for any 0 < h ≤ h∗, E(e|ξk|h) < ∞. Since
E(ξk|Fk−1) = 0 and ex − x ≤ e|x| − |x| for any x, we have

E(eξkh|Fk−1) = 1 + E(eξkh − ξkh− 1|Fk−1)

≤ 1 + E
[e|ξk|h − |ξk|h− 1

h2

∣∣∣Fk−1

]
h2. (46)

Note that for any fixed x > 0, (etx − tx− 1)/t2 is increasing in t ∈ (0,∞). Hence

E
[e|ξk|h − |ξk|h− 1

h2

∣∣∣Fk−1

]
≤ E

[e|ξk|h∗ − |ξk|h∗ − 1

h∗2

∣∣∣Fk−1

]
≤ E(eBh

∗|εij |)

h∗2
≤ c1, (47)

where c1 = µeB
2c−2

0 . Combining (46) and (47), we can obtain

E(eξkh|Fk−1) ≤ 1 + c1h
2.

Then, by recursively applying the above inequality, we have

P
( 1

n

n∑
i=1

ξi ≥ z
)
≤ e−nzhE

(
e
∑n−1
i=1 ξihE(eξnh|Fn−1)

)
≤ e−nzh(1 + c1h

2)n

≤ exp
(
− nzh+ nc1h

2
)
.

Take h = min{h∗, z/(2c1)}, we further obtain

P
( 1

n

n∑
i=1

ξi ≥ z
)
≤exp

(
− nz2

4c1

)
1{h∗≥z/(2c1)} + exp

(
− c0nz/(2B)

)
1{h∗<z/(2c1)}.

Similar argument can be applied to P(n−1
∑n

i=1 ξi ≤ −z) and the desired result follows.

Proof [Proof of Theorem 8] Let bS = (bj,k,·, (j, k) ∈ S) ∈ RsL, and

Ω(b) =

p∑
j,k=1

√√√√ 1

n

n∑
i=1

(ψj,k,·(Xi−1,k)>bj,k,·)2.

Denote

Σ̂S,S =
1

n

n∑
i=1

ΨS(Xi−1)ΨS(Xi−1)>,

and

Σ̂Sj ,Sj =
1

n

n∑
i=1

ΨSj (Xi−1)ΨSj (Xi−1)>.
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By Assumption 6, (34), (35) and (36) hold on some event Z with P(Z)→ 1. In the following,
we shall only work on Z.

A vector b̂ ∈ Rp2L is an optimum of the objective function in (19) if and only if there is
a subgradient ĝ ∈ ∂Ω(b̂), such that

2

n

n∑
i=1

Ψ(Xi−1)(Ψ(Xi−1)>b̂−Xi) + λĝ = 0. (48)

The subdifferential ∂Ω(b) is the set of vectors g = (gjk, 1 ≤ j, k ≤ p), with ĝjk ∈ RL,
satisfying

gjk =
1
n

∑n
i=1 ψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)

>bj,k,·√
1
n

∑n
i=1(ψj,k,·(Xi−1,k)>bj,k,·)2

, (49)

g>jk

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)
>

)−1

gjk ≤ 1. (50)

Following the primal dual witness argument in Ravikumar et al. (2009) and Wainwright
(2009), it suffices to set b̂Sc = 0 and ĝS = ∂Ω(b∗)S , and then show

b̂j,k,· 6= 0, for (j, k) ∈ S, (51)

ĝ>jk

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)
>

)−1

ĝjk < 1, for (j, k) ∈ Sc, (52)

hold with probability approaching 1.

(i). Proof of (51).

Since b̂Sc = b∗Sc = 0, (48) reduces to

2

n

n∑
i=1

ΨS(Xi−1)(ΨS(Xi−1)>b̂S −Xi) + λĝS = 0. (53)

It implies that

b̂S − b∗S = Σ̂−1
S,S ·

1

n

n∑
i=1

ΨS(Xi−1)εi + Σ̂−1
S,S ·

1

n

n∑
i=1

ΨS(Xi−1)ri −
λ

2
Σ̂−1
S,S · ĝS := I1 + I2 − I3.

(54)

We now proceed to bound I1, I2 and I3. Recall the definition of | · |2,α in (23). Also recall
that ‖A‖∞ is the matrix ∞ norm of A = (aij)n×m with ‖A‖∞ = max1≤i≤n

∑m
j=1 |aij |.

For I1, we have

|I1|2,∞ ≤
√
L
∥∥∥Σ̂−1

S,S

∥∥∥
∞
·

∣∣∣∣∣ 1n
n∑
i=1

ΨS(Xi−1)εi

∣∣∣∣∣
∞

=
√
L max

1≤j≤p

∥∥∥Σ̂−1
Sj ,Sj

∥∥∥
∞
·

∣∣∣∣∣ 1n
n∑
i=1

ΨS(Xi−1)εi

∣∣∣∣∣
∞

.
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By Lemma 14, with probability at least 1− (pL)−c1 ,∣∣∣∣∣ 1n
n∑
i=1

ΨS(Xi−1)εi

∣∣∣∣∣
∞

≤ c2

√
log(pL)

n
. (55)

Note that∥∥∥Σ̂−1
S,S

∥∥∥
∞

= max
1≤j≤p

∥∥∥Σ̂−1
Sj ,Sj

∥∥∥
∞
≤ max

1≤j≤p

∥∥∥Σ̂−1
Sj ,Sj

∥∥∥
2
·
√
s0L =

√
s0L

∥∥∥Σ̂−1
S,S

∥∥∥
2
.

Then by (34), with probability at least 1− (pL)−c1 ,

|I1|2,∞ ≤ c2

√
L ·
√
s0L

φmin
·
√

log(pL)

n
= c2φ

−1
min

L
√
s0log(pL)√

n
. (56)

For I2, by (22) and Proposition 6, we have

|I2|2,∞ ≤
√
L
∥∥∥Σ̂−1

S,S

∥∥∥
∞
|ΨS(Xi−1)|∞ |ri|∞ ≤ B

2C(2β − 1)−1φ−1
mins

3/2
0 L3/2−β. (57)

For I3 part, note that for all (j, k) ∈ S,

1

φmax
|ĝjk|22 ≤ ĝ

>
jk

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)
>

)−1

ĝjk ≤ 1.

It follows that

|ĝS |∞ = max
(j,k)∈S

|ĝjk|∞ ≤ max
(j,k)∈S

|ĝjk|2 ≤
√
φmax. (58)

Therefore we obtain

|I3|2,∞ ≤
1

2
λ
√
L
∥∥∥Σ̂−1

S,S

∥∥∥
∞
|ĝS |∞ ≤

√
φmax

2φmin
· λ
√
s0L. (59)

Combining (56), (57) and (59), we have, with probability at least 1− (pL)−c1 ,

|b̂S − b∗S |2,∞ = max
(j,k)∈S

|b̂j,k,· − b∗j,k,·|2

≤ c2φ
−1
min

L
√
s0log(pL)√

n
+B2C(2β − 1)−1φ−1

mins
3/2
0 L3/2−β +

√
φmax

2φmin
· λ
√
s0L.

(60)

By (37) and (38), it follows that, on an event Z1 with probability approaching 1,

max
(j,k)∈S

|b̂j,k,· − b∗j,k,·|2 → 0.

Since max(j,k)∈S |b∗j,k,·|2 > 0 and will not converge to 0 asymptotically, (51) holds on an
event Z1 with probability approaching 1.
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(ii). Proof of (52).

Since b̂Sc = b∗Sc = 0, for all (j, k) ∈ Sc, (48) reduces to

2

n

n∑
i=1

ψj,k,·(Xi−1,k)(ΨSj (Xi−1)>b̂Sj −Xi,j) + λĝjk = 0.

It implies that

ĝjk =
2

λ

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)(ΨSj (Xi−1)>(b∗Sj − b̂Sj ) +
1

n

n∑
i=1

ψj,k,·(εij + rij)

)
.

By (54), we have

ĝjk =

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ΨSj (Xi−1)>Σ̂−1
Sj ,Sj

)
ĝSj

− 2

λ

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ΨSj (Xi−1)>Σ̂−1
Sj ,Sj

)
1

n

n∑
i=1

ΨSj (Xi−1)εij

− 2

λ

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ΨSj (Xi−1)>Σ̂−1
Sj ,Sj

)
1

n

n∑
i=1

ΨSj (Xi−1)rij

+
2

λ
· 1

n

n∑
i=1

ψj,k,·εij +
2

λ
· 1

n

n∑
i=1

ψj,k,·rij

:= II1 − II2 − II3 + II4 + II5.

Since for all (j, k) ∈ Sc,

ĝ>jk

(
1

n

n∑
i=1

ψj,k,·(Xi−1,k)ψj,k,·(Xi−1,k)
>

)−1

ĝjk ≤
1

φmin
|ĝjk|22 .

It suffices to show max(j,k)∈Sc |ĝjk|2 <
√
φmin. We now proceed to bound II1, II2, II3, II4 and

II5.

For II1, by (36) and (58),

|II1|2 ≤

∥∥∥∥∥ 1

n

n∑
i=1

ψj,k,·(Xi−1,k)ΨSj (Xi−1)>Σ̂−1
Sj ,Sj

∥∥∥∥∥
2

|ĝSj |2

≤

√
φmin

φmax
· 1− δ
√
s0
·
√
s0

√
φmax

≤ (1− δ)
√
φmin. (61)
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For II2, by Lemma 14, as s0 < n, with probability at least 1− (nL)−c3

|II2|2 ≤
2

λ
·

√
φmin

φmax
· 1− δ
√
s0
·
√
s0L

∣∣∣∣∣ 1n
n∑
i=1

ΨSj (Xi−1)εij

∣∣∣∣∣
∞

≤ 2

λ
·

√
φmin

φmax
· 1− δ
√
s0
·
√
s0L · c4

√
log(nL)

n

= c5
1

λ

√
Llog(nL)

n
. (62)

For II3, by (22) and Proposition 6, we have

|II3|2 ≤
2

λ
·

√
φmin

φmax
· 1− δ
√
s0
·
√
s0L ·B2C(2β − 1)−1s0L

1/2−β = c6
s0L

1−β

λ
. (63)

Similarly, for II4, with probability at least 1− (nL)−c7 ,

|II4|2 ≤ c8
1

λ

√
Llog(nL)

n
. (64)

For II5,

|II5|2 ≤ 2B2C(2β − 1)−1 s0L
1−β

λ
= c9

s0L
1−β

λ
. (65)

In view of (61), (62), (63), (64) and (65), for all (j, k) ∈ Sc, we can obtain, with
probability at least 1− (nL)−c3 − (nL)−c7 ,

|ĝjk|2 ≤ (1− δ)
√
φmin + (c5 + c8)

1

λ

√
Llog(nL)

n
+ (c6 + c9)

s0L
1−β

λ
. (66)

By (38), it follows that, on an event Z2 with probability approaching 1,

|ĝjk|2 ≤ (1− δ)
√
φmin + o(1).

Hence, (52) holds on an event Z2 with probability approaching 1. Then Theorem 8 follows.
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Lukas Meier, Sara Van de Geer, and Peter Bühlmann. High-dimensional additive modeling.
The Annals of Statistics, 37(6B):3779–3821, 2009.
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