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High dimensional generalized linear models are widely applicable in many scientific fields with
data having heavy tails. However, little is known about statistical guarantees on the estimates
of such models in a time series setting. In this article, we establish statistical error bounds and
support recovery guarantees of the classical £; regularized procedure for generalized linear model
with temporal dependent data. We also propose a new robust M-estimator for high dimensional
time series. Properties of the proposed robust procedure are investigated both theoretically
and numerically. As an extension, we introduce a robust estimator for linear regression and
show that the proposed robust estimator achieves nearly the optimal rate as that for i.i.d sub-
Gaussian data. Simulation results show that the proposed method performs well numerically in
the presence of heavy-tailed and serially dependent covariates and/or errors, and it significantly
outperforms the classical Lasso method. For applications, we demonstrate, in the supplementary
material, the regularized robust procedure via analyzing high-frequency trading data in finance.

Keywords: high dimensional analysis, time series analysis, generalized linear model, robust esti-
mation, support recovery.

1. Introduction

In recent years, information technology has made high dimensional time series data in-
creasingly common. The demand for modelling and forecasting such data arises naturally
from communication engineering, environmental studies, market analysis in finance and
panel studies in economics, among others. In many applications, we often face the chal-
lenge of dealing with a large number of complicated issues such as missing values or heavy
tails. The Lasso regularized method, originally introduced by [71] and subsequently in-
vestigated by many others, is a popular technique for high dimensional linear regression
models with sparse coefficients. As a matter of fact, the £;-type penalty of the Lasso
can also be applied to other models in high dimension, including, for example, logistic
regression ([25, 47, 67, 69], among others), multinomial logistic regression [43] or Cox re-
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gression [72] by replacing the 5 loss function by the corresponding negative log-likelihood
function.

Generalized linear models (GLM, [51]) are a flexible generalization of the ordinary lin-
ear regression by allowing researchers to model the relationship between the predictors
and a function of the mean of the response variable, which can follow a continuous or dis-
crete distribution. In a variety of applications, the observed response consists of binary or
count data for which GLM is especially useful. See, for example, social network analysis
[5, 44, 63, 70, 91], biological neural networks [7, 18, 58], compressed sensing [42, 61, 62],
power systems analysis [38], and seismology [57, 80]. This paper deals with the Lasso
penalty for GLM applied to high dimensional time series data. Under the independent
and identically distributed (i.i.d.) setting, there exists substantial literature on the Lasso
methods for high dimensional GLM. For instance, [79] showed non-asymptotic oracle
inequalities for the empirical risk minimizer with Lasso penalty for high dimensional
GLMs with a Lipschitz loss function. [36] studied Lasso estimator in the Cox propor-
tional hazards regression when the covariates are time dependent, and established oracle
inequalities for prediction and estimation errors. A number of papers analyzed penalized
methods beyond Lasso. [52] applied group Lasso to high dimensional logistic regression,
proposed an efficient algorithm, and showed consistency of the estimator. [56] studied
penalized M-estimators with a general class of regularization methods, including an /s
error bound for the Lasso in GLM. [37] studied weighted absolute penalty and its adap-
tive, multistage application in GLM. [24] investigated asymptotic equivalence of Lasso
and other concave regularized methods in a thresholded parameter space. [41] studied
adaptive Lasso and group-Lasso for the functional Poisson regression.

Despite the extensive research in GLMs for i.i.d data, very limited work focused on
theoretical properties of the regularized estimates when the observations are dependent.
[2] investigated theoretical properties of Lasso estimators with a random design for high
dimensional Gaussian processes. [86] analyzed Lasso estimator with a fixed design matrix
and Dantzig selector under random design. [31] extended the Lasso estimator to random
design and weakly sparse time series with application in now-casting. [90] considered non-
parametric sparse additive model for linear autoregression. [27] studied Lasso estimators
of high dimensional autoregressive generalized linear models, which was further extended
in [49]. See also [26, 30].

The phenomenon of heavy-tails is widely observed in time series data. It is one of
the stylized facts in financial econometrics that financial returns and macroeconomic
variables have high excess kurtosis. Large scale imaging data in biology, such as neural
spike recordings (see, for example, [7, 18, 58]), are often corrupted by non-Gaussian noises.
The conventional regression estimator may fare poorly or even be inconsistent when the
observations are heavy tailed and/or contaminated by outliers in the predictors and/or
the response variable. Therefore, it is important to study effective principles for dealing
with heavy-tailed or noisy time series data.

The origin of robust statistics dates back to the fundamental works of John Tukey
[76, 77], Peter Huber [39, 40] and Frank Hampel [28, 29]. In general, robustness can
be defined in two ways; model misspecification and outliers. For example, Tukey’s work
[76] is about robustness to a misspecification of the Gaussian model, while Hodges’ work
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[34] is robustness to contamination of the dataset by extreme outliers or robustness to
heavy-tailed distributions in the model that lead to the appearance of some aberrant
data. It is well known that if the covariates and/or the errors deviate more wildly from
the sub-Gaussian distribution, the linear regression estimator based on the least squares
loss no longer converges at the optimal rates. Intuitively, an outlier in the covariates may
cause the corresponding M-estimator to behave arbitrarily badly. This motivates the use
of generalized M-estimators that downweight high-leverage observations. In the classical
theory of robust regression in low dimensions, many weighting functions are introduced,
such as Mallows estimator [48], Hill-Ryan estimator [33], and Schweppe estimator [54].
In this paper, we focus on heavy-tailed covariates and heavy-tailed errors for generalized
linear model. We also extend the robust M-estimator to high dimensional time series.

Driven by a wide range of contemporary scientific applications, robust regression of
high dimensional data is of substantial research interest. Indeed, several papers have shed
new light on high dimensional robust M-estimator when the population distribution is
heavy tailed or noisy. [12] considered estimation of the mean of heavy-tailed distributions
via a robust empirical loss, which is insensitive to extreme values. Cantoni’s mean esti-
mator is further extended in [8] to empirical risk minimization. [35, 55] applied “median
of mean” estimator to high dimensional sparse regression. [23] introduces a simple prin-
ciple for robust high dimensional low rank matrix recovery via an appropriate shrinkage
on the data. [21] developed estimation bounds for penalized robust regression with the
Huber loss function. [45] gave a general framework for robust regularized M-estimators
under both convex and non-convex loss functions. However, all prior works focused on
the setting where samples are i.i.d. To the best of our knowledge, the existing procedures
cannot readily be applied to high dimensional time series data.

The goal of this paper is threefold: (i) To lay a theoretical foundation for high di-
mensional generalized linear models (GLMs) in situations in which the errors or the
covariates can be serially dependent; (ii) To develop novel robust estimation of GLMs
for serially dependent data in the case that the dimension can be much larger than the
sample size, and to provide a solid theoretical guarantee; (iii) To derive sharp inequalities
for tail probabilities for dependent and/or non-sub-Gaussian processes under some mild
and easily verifiable conditions. It is worth emphasizing that our model is different from
the autoregressive generalized linear model considered in [27] and [49]. It is expected that
our framework, inequalities and tools will be useful in other high dimensional problems
that involve temporal dependent data.

In this paper, we propose to appropriately shrink the feature variables before calculat-
ing the M-estimator to achieve the robustness for high dimensional time series regression.
Let X; be a p-dimensional vector of covariates. If X; is heavy-tailed, the basic idea is to
shrink each feature X;;(1 < j < p) to a predetermined threshold level 7. We show that
the regularized robust regression functions continue to enjoy good behavior. Our first con-
tribution is to provide the asymptotic behavior of the estimated GLM coefficients of the
Lasso penalized method for both the original time series data and shrinkage heavy-tailed
data. It is shown that an appropriate truncation does not induce significant bias. Under
only bounded moment conditions for either noise or covariates, our robust estimator can
nearly achieve the error bound for i.i.d. sub-Gaussian data, modulo a price for temporal
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dependence. The performance of the proposed shrinkage Lasso estimator is thus shown
to be much better than that of the vanilla estimator. The allowed dimension p can be as
large as exp(n®), where n is the sample size and 0 < ¢ < 1. This means that shrinkage
not only overcomes heavy-tailed corruption, but also mitigates the curse of dimension-
ality. We also establish support recovery guarantees and ¢, bounds for both methods.
Furthermore, unlike the usual robust quasi-likelihood estimators in low dimension, which
is non-convex, our method still maintains convexity, thus enjoys certain computational
advantages.

In addition, our robust estimator can also be applied to the usual linear regression set-
ting for high dimensional time series. For weakly temporal dependence and heavy-tailed
data, our robust method achieves nearly the minimax optimal rate of /5-norm established
by [64] for i.i.d sub-Gaussian data. The difference lies in the scaling requirements on p,
n, the sparsity condition, and the additional logarithmic factor of n in the rate, which is
induced by the temporal dependence. It is also worth noting that we provide new con-
centration inequalities, which extend Talagrand’s inequality and Bousquet’s inequality
[6] to high dimensional time series. The extension is of independent interest.

Besides the theoretical properties, we also study the numerical performance of the
proposed robust procedure using both simulated and real data. Section 5 considers the
simulation studies and shows that our robust procedure performs well numerically in the
presence of both symmetric and asymmetric heavy-tailed covariates and/or errors. In
particular, the robust procedure significantly outperforms the standard Lasso method,
especially in ¢ and f5 losses of the GLM coefficients. We also illustrate our procedure
with an application to high-frequency stock trading for predicting price changes in con-
secutive transactions via a multinomial logistic regression. Our method leads to marked
improvements in prediction compared with the existing methods in financial economet-
rics.

The rest of the article is organized as follows. Section 2 introduces the standard Lasso
procedure and the robust procedure for GLM when the covariates or/and the errors have
heavy tails. The framework of high dimensional time series is presented in Section 3.1.
Theoretical properties of both robust and non-robust GLM estimators are also inves-
tigated in Section 3. After the basic assumptions of Section 3.2, Sections 3.3 and 3.4
study the convergence rates of the standard Lasso procedure and the robust procedure,
respectively. Section 4 discusses the conventional linear regression with robust estimator
and time series data. Section 5 investigates the numerical performance of the proposed
robust procedure and compares it with that of the standard Lasso procedure. Concen-
tration inequalities for high dimensional time series, real data analysis, and all the proofs
are given in the supplementary material.

1.1. Notation

Throughout the paper, for a vector @ = (x1,...,2,), define |z]y = (2 + ... + 22)'/2,
|z]oo = max{|z1], ..., |zp|}. For a matrix A = (a;;) € RP*™, denote entrywise max norm
|Aloc = max; j|a;;| and induced matrix-operator norm ||All; = maxi<j<m Y iy |aijl,
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High Dimensional GLMs for Temporal Dependent Data 5

|Allcc = maxi<i<p Z;n:l la;;|. If A € RPXP is a square matrix, let A\j(A4) > Aa(4) >
-+ > Ap(A) be its eigenvalues in descending order. Also denote Amax(A) = A1(A4) and
Amin(A) = A\p(A). For a random variable &, let |||, = (E|¢]™)Y™ and write £ € L™,
m > 1, if ||€]|,, < oo. For simplicity, denote [[£| = ||£[|2. For a set S, write |S| as
its cardinality. For two sequences of real numbers {a,} and {b,}, write a,, = O(b,,) if
there exists a constant C such that |a,| < C|b,| holds for all sufficiently large n, write
an, = o(by) if limy, o0 an /by, = 0, and write a,, < b, if there are positive constants ¢ and
C such that ¢ < a,/b, < C for all sufficiently large n. Denote a A b = min{a,b} and
a Vb =max{a,b}. We use C,C4,Cs,--- to denote positive constants whose values may
differ from place to place. A constant with a symbolic subscript is used to emphasize the
dependence of the value on the subscript. We assume p = p,, — 0o as n — co.

2. The Model

2.1. Generalized linear models and the loss function

Consider n observations {(X;,Y;)}";, where X; € X C R? is a p-dimensional vector of
covariate variables, and Y; € Y C R is the response variable. We model the dependence
of the mean of Y; on X; via the linear function fz-(X;) = X," 8%, where 5* is a vector
of unknown coefficients and X, is the transpose of X;. The goal is to estimate 8*. In a
high dimensional model, the number of covariates p can be much larger than the number
of observations n. Let R : X x Y — R be a loss function.

We consider the following estimator of empirical risk minimization with Lasso penalty

Bim argm,gn{;Zlmmxo,mwml}7 )

where f5(X;) = X" B. Assume the response variable Y; is from an exponential family
with the probability density function taking the canonical form

hy (y; ) = exp [yp — r(p) + b(y)]

for some known functions r(-) and b(-), and unknown function p. The function p is usually
called the canonical or natural parameter. The mean response is r/(p), the first derivative
of r(p) with respect to p. The generalized linear model assumes the form:

E(Y|X) = 7' (u(X)) = ' (X" 87).

The canonical link function is thus defined as g := (r')71. Let z = u(X). The maximum
(marginal) log-likelihood loss function is then

R(zy) = —yz+r(2), yel, zeR (2)
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6

Define the objective empirical risk function as
1 n
Ru(B) = — > R(f3(X:),Yi).
i=1

The gradient and Hessian of R, () are respectively

VRAB) = 1 3 (7 (fa(X0) - Y0 X 0
HL(8) = VPRa(B) =+ D" (Fs(X0) XX, (1)
=1

We also define the symmetric Bregman divergence as

Dr(B,8%) = (B~ )T (VRa(B) = VRa(8")), ()

which can be viewed as symmetric, partial Kullback-Leibler distance between the log-
likelihood at 8 and 5*.

In this paper, we focus on 3 of the empirical risk minimization of (1) and (2). Extension
to quasi-likelihood loss will be discussed in the supplementary material.

2.2. Robust Lasso estimator

Inspired by the theory on robust estimation for linear regression (see e.g. [23]), we study
regularized versions of high dimensional robust GLM estimators and establish their sta-
tistical guarantees. In order to deal with heavy-tailed data, we propose a robust estimator
to be used in (1) by the simple and classical principle of truncation [23], or more generally
shrinkage. Our approach is simple: we truncate or shrink appropriately the heavy-tailed
covariates or/and the response variable. Intuitively, shrinkage reduces sensitivity of the
estimator to data corruption caused by the heavy-tailed distributions. However, shrink-
age leads to bias. We shall find an appropriate shrinkage level to balance the induced
bias and the statistical error rate. The resulting estimator is then defined as follows:

B = argm&n{i;RT(fﬁ(Xi)vﬁ)JF)‘5|1}v (6)

where 7 is a predetermined threshold level,
R-(f5(X2),Yi) := R(f5(X2). Yi),

and )?Z is a truncated version of the covariates X; if they are heavy-tailed and equals the
original covariates (truncation threshold goes to infinity) if they are light-tailed. When
the covariates X; are heavy-tailed, we choose

Xij =sgn(Xy;)(|Xij| A7), 1<j<p,
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High Dimensional GLMs for Temporal Dependent Data 7

where a Ab = min(a, b). In practice, we may need to first normalize X; for each covariate
Xij, for 1 < j < p, before applying truncation. As discussed in [31], such normalization
will not lose signal information when the time series is stationary.

In general, under the GLM setting, the response (e.g., binary data) is considered not to
be corrupted by heavy tailed noise. Thus, in Section 3, we focus on the case when the data
generating distribution of the response is indeed the model distribution so that we only
need to trim the covariates. If the response is also corrupted by random noises, we shall
also truncate the response properly. For the linear regression model with least squares loss
in Section 4, it is common in the literature to consider the case that the response might
have heavy tails. Then we need to further truncate the response to achieve robustness.

With the aforementioned data robustifications, the proposed methodology yields an
estimator that, under a bounded moment condition on the covariates or/and the response,
has the similar statistical rate as that of the estimator available in the literature for sub-
Gaussian distributions. Our study gives a formal theoretical consideration of both the
original estimator in (1) and the robust one in (6). As shown in Sections 3 and 4, compared
with [23], our rates are nearly optimal up to an additional multiplicative logn term.

The first and most important advantage of our robust method is to maintain the con-
vexity of (negative) log-likelihood loss. There are several alternatives to robust estimation
in the context of low dimensional generalized linear model. For example, [11] proposed
a class of robust quasi-likelihood loss function. [3] constructed robust estimator for the
logistic regression by bounded deviance, which was further extended to other generalized
linear models. [87] introduced a class of robust estimators for generalized linear models
motivated by the Bregman divergence. However, most of these robust estimators in the
low dimensional case are non-convex.

Our robust method is also much easier to implement than many existing ones, as it
only needs to truncate or shrink the data before applying the standard method to the
transformed data. The tuning parameter 7 plays a key role by adapting to covariates
and/or errors with different shapes and tails. In practice, the optimal values of tuning
parameters 7 and A can be chosen by a two-dimensional grid search using an information-
based criterion or time series cross-validation, e.g., the Akaike information criterion or
Bayesian information criterion. Specifically, we may partition a rectangle in the scale of
(log(7),log(A)) to form our search grid. Then the optimal values are achieved by the
combination of the two parameters that minimizes the cross-validated measurement, the
Akaike information criterion or Bayesian information criterion. In addition, the robust
cross-validation proposed in [23] can also be used to tune (A, 7) by replacing the K-fold
cross-validation with time series rolling forecast.

3. Asymptotic Properties

We now consider the properties of the standard Lasso method (1) and the robust Lasso
method (6). We first show the statistical error rates and the support recovery guarantees
of the estimated GLM coefficients for the original time series data and then demon-
strate that the convergence rates of robust estimator for shrinkage heavy-tailed data are
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significantly improved.

3.1. High dimensional time series

Let ¢, € Z, be i.i.d. random vectors and F; = o(--- ,€,_1,¢;). We assume that the
covariate process (X;,4 = 1,...,n) is high dimensional and stationary in the form

Xi = (91(F), s gp(Fi)) T, (7)
and the response Y; assumes the form

where g1(-),...,gp(-) and gy(-) are measurable functions in R such that X; and Y; are
well-defined. In the scalar case with p = 1, (7) and (8) include a very general class of
stationary processes; c.f. [60, 65, 73, 74, 81, 82].

Following [82], at lag i > 0, we define the functional dependence measure

Sigi = I1Xij — Xijqo1lle = 195 (Fi) — 95 (Fi 103 llgs
diqy = 1Y; — Yi,{O}Hq = Hgy(]:i) - gy(fi,{O})Hm

where the coupled process X;j; 10y = gj(Fiq0y) and Y; 0y = gy(Fioy) with Fj 10y =
(s 821,05 €1, -, Ei—1,&;) and £f,&;,1 € Z, being i.i.d. random elements. The depen-
dence measure J; 4,; quantifies the g-th moment of the difference between the original
process X;; and the coupled process X;; 19y with o replaced by e and all the other
innovations kept the same. We assume short-range dependence so that

o0
Apgj =Y ig; <0,
i=m

oo
Apgy = § 0i,q,y < 00.
i=m

Then for fixed m, Ay, 4; and A,, 4, measure the cumulative effect of 9 on (Xj;)i>m
and (}/Z)sz
We introduce the following dependence adjusted norms

[ Xjllga = sup(m+1)*Ap g5, a >0, 9)
m>0

X jllg,ame = sup p; ™ Apy g5, for some 0 < p; < 1, (10)
m>0

[ Xjlly, =supq™ Ao (11)
q=>2

Similarly, we can define ||Y||4.a, |Y.]lq,amc and ||Y ]|y, . Both [| X j|l4.o and || X ;|lq.aMmc
are called the g-th dependence adjusted norms. By (9), if ||.X j|/¢.a < 00, then A,, ;; =
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High Dimensional GLMs for Temporal Dependent Data 9

oo 0iq; = O(m™%) so that a larger « indicates weaker temporal dependence. In other
words, || X j||q,o assumes polynomial decay of the dependence measure with a larger value
of a leading to weaker temporal dependence. In contrast, || X ;||4,amc allows exponential
decay of the functional dependence measure d; 4 ;. Property (10) is also called geometric
moment contraction (GMC(q)); c.f. [68, 85, 88]. In addition, [|X ;||,, represents the 1,
Orlicz norm in the dependence case. In the special case that X;; are i.i.d. with mean
0, we have d; 4 ; = 0 for all i > 1, and do4,; = || Xo; — Xoj 103]l¢- In this case, the ¢-
th dependence adjusted norms || X j||4,o and || X j||q,cmc are equivalent to the £9 norm
| Xijllq in the sense that [[Xijlly < 60,5 < [|Xijllq + [ Xijq03ll¢ = 2[1Xi;l4- Moreover,
if v = 1/2 (resp. v = 1), || X ||y, is a sub-Gaussian (resp. sub-exponential) norm of
the random variable X,;. Hence, the dependence adjusted norms || - ||lg.a, || - llg,aMmc
and || - ||, can be naturally interpreted as the polynomial moment and the exponential
moment accounting for dependence, respectively.

Remark 3.1. If || X;;|lq- < oo for some ¢* > 0 and || X ;| q0,amc < 00 holds for the
process (Xi;) for some 0 < qo < ¢* and p; € (0,1), then || X j|lq,amc < oo also satisfies
with the same p; for all ¢ € (0,¢*]. The above property of geometric moment contraction
follows by Lemma 2 in [84].

We provide an example of high dimensional time series below, for which we can cal-
culate the bounds of the dependence adjust norms defined in (9), (10) and (11).

Exzample 3.1. Lete;;, i,j € Z, be i.i.d. random variables with mean 0 and ||e;;]|4 < 00
for some q > 2. Define the p-dimensional linear process

(oo}
Xi = ZAkEi—kv (12)
k=0
wheree; = (€;1,...,€ip) |, Ax are pxp real coefficient matrices such thaty_pe o tr(Ag AL ) <

0o. Then by Kolmogorov’s three series theorem, the linear process (12) is well defined.
Let Ay ;. be the jth row of Ay. By Rosenthal’s inequality [66], we can obtain

8iq; = | Aizcollg < (@ —1)*2| A4 512 ]l€00]lq-

(i). If there exist 0 > 1 and K > 0 such that maxi<;<p |Ai |2 < K(i+1)~? for alli >0,
then with oo = 0 — 1, we have

1 X 51l gya = SUP (m+1 Z Jig.i < Co.gKle00llq,

where the constant Cy 4 only depends on 0 and q. If &' > 0 — 1, then || X j|lq,o0 may be
00.

(11). If there exist p; € (O 1) and K > 0 such that maxi<j<p|A; .2 < Kpé- holds for all
i >0, then since Y .2, ps = p" /(1 — p;), we have

_ Kla=1"Jeolly

b —
—Pj

q,GMC = SUP P] ;" E diqj <

i=m
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(iii). Suppose maxg|,—1 ¢~ "||e;] 0y < C\ < 00 for all ¢ > 2. If maxi<j<p D sop [Ai |2 <
K, for some K >0, then

oo
X jllp, =supg™ Z5i,q,j <C,K.
922 i=0

When v = 1/2, it is similar to the sub-Gaussian Orlicz norm in the i.i.d. case; see for

example [20, 21].

To account for the cross-sectional dependence of the p-dimensional stationary process
(X;), we define the £ functional dependence measure and its corresponding dependence
adjusted norm (cf. [14, 15, 89])

Wiq = || fgfé{p |Xij - Xij,{0}|||q = |||Xz - Xi,{0}|00||q7

o0
11X Joollg,a = Su>%(m +1)%Qmg, a>0, and Qg = Z Wi,g-
m=

i=m

Additionally, we define

11X [, = supg™"Qq 4.
q>2

In this paper, we use the above dependence adjusted norms to study the limiting
properties of Lasso estimators in the presence of serial dependence. The framework of
functional dependence measure allows many linear and nonlinear time series models; see
[68, 82, 85] for examples.

3.2. Assumptions
To prove theoretical properties of our method, we make the following assumptions.
Assumption 1 (Convex Loss). Throughout this paper, the map
z— R(z,y)
is convez for ally € ).

This assumption is important from a computational perspective; see e.g. [45, 78]. It

also plays a crucial role in our theory, as it allows us to prove that the estimator 3 is in
a neighborhood of g*.

Assumption 2. Consider the function r in the maximum log-likelihood loss function
(2). It holds that |r'(x)] < My < oo, |[r"(z)] < My < oo for any x € R. Moreover,
[ (z1) — r"(x2)| < Ms|z1 — 22| for any x1,x2 € R with M3 < co.
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High Dimensional GLMs for Temporal Dependent Data 11

Assumption 2 describes some smoothness conditions. Similar assumptions were im-
posed in [1, 20, 46]. Assumptions 2 requires that the second order derivative is Lipschitz.
It is used to control the symmetric Bregman divergence and Hessian of the log-likelihood
in a neighborhood of 8*. In fact, except for Poisson regression, many examples of gener-
alized linear models and loss functions satisfy this condition, such as logistic regression,
multinomial logistic regression, huber loss, etc.

Assumption 3. Let S={j:f; # 0}. Assume |S| <s.

Assumption 4. Assume EX; = 0 and there exists a constant kg > 0 such that
Amin (EH ,(8%)) = Amin(Er” (X, %)X, X;") > kn.

Assumption 4 is similar to the compatibility condition in [9, 79]. It is well known
that the restricted strong convexity (RSC) of the loss function underpins the statistical
guarantee of the M-estimator [56]. In high dimensional sparse linear regression, RSC is
implied by the restricted eigenvalue condition [4]. However, in generalized linear models,
the Hessian matrix H,, () depends on 3, which creates some technical difficulty of ver-
ifying RSC for the loss function. To address the issue, we need to establish local RSC
(LRSC) of R, (B) within a neighborhood of 8*, which has been shown to be sufficient
for statistical guarantee of regularized M-estimators in the high dimensional regime [22].
The LRSC is also closely related to the quadratic margin condition in [9, 79]. It can be
verified by our Assumptions 2 and 4 in every case of this paper.

Formally, we say a loss function R, () satisfies LRSC(C(S), NN, kr,pr) if any A €
C(S) and B € N,

Ra(B+A) =Ru(B) — (VRa(B)TA > kr|Al3 — ¢r, (13)

where NV is a neighborhood of 3*, kx is a positive constant, ¢x is a small tolerance term,
C(9) is the restricted cone for S C {1,2,...,p} and |S| = s,

C(S):={A eRP:|Age|s < 3|Ag|1}. (14)
Note that, according to [56], when A > 2|VR,,(8)|s0, B — 5* falls in the restricted cone
C(9).
3.3. Rate of convergence for the standard Lasso procedure
In this section, we present /1, {5 and £, bounds of the standard Lasso estimator B and
the model selection consistency. We first establish the LRSC of Lasso method for the
original time series data under the finite polynomial moment case.
Lemma 3.1. Suppose Assumptions 3 and 4 hold. Assume |5*|1 < L < oo, |r"(z)] <

My < 00 and |[r"(x1) — r"(x2)| < Ms|xy — xo| with M3 < oo. Furthermore, assume that
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max|,|,—1 E|X; V|7 < ¢y < 00 and ||| X |solly,ax < 00, where v > 32/7, ax > 21/2—8/~.
Let ag = ax /7 — 1. Suppose

/1
A= apa % + ap75n16/(77)*1(10gp)3/2,

where
apa = |1X ool max X 5112 0k + max 1X 5112 s (15)
aps = [1X oo l}/a 11X loo 2 0 + 11X |ocl o, - (16)

Let N = {B € RP : |B — B*|3 < C13)\2, B — B* € C(S)}, where C(S) is defined in (14).
Then, as long as n*/7\/s\ + s\ < Cr, R,(B) satisfies LRSC(C(S), N, ku/2,0) in an
event with probability at least 1 — Cy(logp) ™7/ (167 — Cyn= —p=C4+ where C4,...,Cy > 0
are constants and C, > 0 depends on L.

Based on the above lemma, we can derive the statistical rate of the Lasso estimators.
For any Lasso solution 8 of Equation (1), the following theorem provides the rates of
convergence of |8 — *|; and |8 — 5*|2 by the dependence adjusted norms.

Theorem 3.1. Suppose Assumptions 1, 2, 8 and 4 hold. Assume |8*|1 < L < co. Also
assume max|,|,—1 B[ X v]? < co < 00, [||X |scllyax < 00 and [|Ylgay < oo, where
v >32/7,q¢>2, ax >21/2—-8/v, ay >1/2—1/y—1/q > 0. Let oy = min{ax,ay}
and ag = ax /7 — 1. Define

ap,1 = max 1X il 1Y g + 11X Joo 1 max X 5 lly,ax + max X 511y, a2
ap,2 = |||X<|OC||%O¢1 Y. |q,a1a
aps = |1X oo 15/ X Jolly.ax + X loclly.ae-

Suppose that

lo a,2(lo 3/2 g, 3(lo 3/2 g, x5(lo 3/2
A (a1 4+ ay ) / §p+ p.2(logp) N ».3(logp) N ».5(10gp) , (17)

77,1*1/(1*1/7 nlfs/(%/) n1*16/(7’7)

where a, 4 and a, 5 are defined in (15) and (16). Then, as long as n?/7\/s\ + s\ < O,
in an event with probability at least 1 —C1 (log p) =9/ (a+7) —Cy(log p)~71/16 —p=1 —p=Cs,

1B = B°[3 < CasA, (18)
B = B"|1 < Css, (19)

where C4,...,C5 > 0 are constants, and Cr, > 0 only depends on L.

Note that quantities ap1,...,a,5 characterize the dependence adjusted norms and
may depend on the dimension p. The temporal dependence contributes some additional

imsart-bj ver. 2014/10/16 file: output.tex date: November 28, 2021



High Dimensional GLMs for Temporal Dependent Data 13

factors in the statistical error rates and in the sample size requirement. The first term
in the order of X in (17) resembles the well known sub-Gaussian rate /(logp)/n in the
i.i.d. case. The quantities o, ao, ax measure the temporal dependence strength, and the
moment condition v quantifies the heaviness of the tail. Thus the remaining terms in
(17), which are introduced by the heavy-tailedness, will induce a polynomial term of p if
|||X»|oo||'y,ax = pl/ﬁﬂ

Here we assume that the short-range dependence condition holds, that is,

11X ] ool

vax <00 and ||Y|gay < o0.

If it fails, the processes (X;) and (Y;) may exhibit some long-range dependence, and the
asymptotic behavior can be quite different.

In Theorem 3.1, both ax and ay control the decaying speed of the functional depen-
dence measures. To gain more insight into the effects of temporal dependence, we provide
the statistical error rates in the following proposition under the i.i.d. setting. The quan-
tity A in (17) can be substantially simplified with (log p)®/? there being replaced by log p,
and ap 1, ..., ap 5 replaced by the moments that do not involve temporal dependencies.

Proposition 3.1. Suppose Assumptions 1, 2, 3 and 4 hold. Assume that the observa-
tions (X;,Y;) are i.i.d. and max,,—1 E|X; v|7 < ¢g < o0, ||Yilq < oo, where v > 4,
q > 2. Suppose that

logp | (logp)|| max; | Xyl || Vil
~ 2 ] J Y q
/\A(m?XIIXz'ijIIKIIq+meIIXijIIV)\/ ot e/

. logp)|[max; | Xi[[13
n1_2/’)’ )

Then, as long as nQ/V\/E)\Jrs)\ < Cy, in an event with probability at least 1—C4 (logp)*7/2f
Ca(logp)~ 0/ (@+7) — =1 —p=Cs the statistical error rates in (18) and (19) continue to
hold, where Cy,C1,Cs,C3 > 0 are constants.

Remark 3.2 (Effects of heavy-tailedness). In both Theorem 3.1 and Proposition 3.1,
the tuning parameter A includes a polynomial term of dimension p and sample size n,
indicating how the dimension breaks down if the moment condition weakens or the de-
pendence becomes stronger. In addition, error bounds (18) and (19) with the new rates
for \ show that the convergence rate of the estimated coefficient B can be much slower
than that in the i.i.d. sub-Gaussian setting.

When the process X; has an exponential type tail bound, we verify the LRSC in the
following Lemma 3.2. Differently from Theorem 3.1, sharper statistical rates of 8 are

established in Theorem 3.2.

Lemma 3.2. Suppose Assumptions 3 and 4 hold. Assume |*]1 < L < oo, |r"(z)| <
My < oo and |r"(x1) — r"(z2)] < Ms|zy — x| with M3 < oo. Furthermore, assume
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maxi <j<p || X jlly, < 00, and sup,; maxj,—1 7| X; 0], < co < co, where v > 0. Let
N ={BeRP:|3—pB*3<C1s\% B — B*€C(S)}, where C(S) is defined in (14).
(i). Suppose

00g101/2+3L

N

Then, as long as (logn)‘y/sA + s\ < CL, R,(B) satisfies LRSC(C(S), N, ku/2,0) in an
event with probability at least 1 — n=%2 — p=Cs where C1,Cy,C3 > 0 are constants and
Cr, > 0 depends on L.

(ii). Assume the process X; also satisfies the geometric moment contraction, so that
1X jll6,amc < oo for some constant 0 < p; < 1, and p =min;{p,;} € (0,1). Suppose

[logp = (logp + logn)t 2
)\ijaXHX.ng,GMC n + .

A= max || X 43,
J

n

Then, so long as (logn)‘\/sA + s\ < CL, R,(B) satisfies LRSC(C(S), N, ku/2,0) in an
event with probability at least 1 — n=% — p=Cs where C1,Cs,Cs > 0 are constants and
Cr, > 0 depends on L.

Theorem 3.2. Suppose Assumptions 1, 2, 3 and 4 hold. Assume |B*|1 < L < oco. Also
assume sup.,s; maxg,—1 7 " X; 0]l < co < o0, maxi<j<p [| X jlly, < o0, [|[Y]ly, < oo,
where v, v > 0.

(i). Suppose

(logp>1/2+y+L + max ||X ‘ 3 (logp)1/2+3L
me I, :
\/’E J \/ﬁ

Then, so long as (logn)'v/s\+ s\ < Cr, in an event with probability at least 1 —n~¢1 —
p~C2, we have

(20)

Yy,

A =< max [| X ||y,
J

18— B3 < Cas\?, (21)
B = B[1 < Cash, (22)

where Cy,Co,C3,Cy > 0 are constants, and Cr, > 0 only depends on L.
(ii). Assume the processes X; and Y; also satisfy geometric moment contraction, so

that || X jll6.amc < oo for some constant 0 < p; < 1, ||Y.||4,amc < 0o for some constant
0< py <1, and p =min{p;, p,} € (0,1). Suppose

[logp
la,amcllY |la,amc + max 1X 5118 amc) o

142¢

A =< (max || X
J

, (logptlog n)t ety , (logptlogn)
n n

(23)
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High Dimensional GLMs for Temporal Dependent Data 15

Then, as long as (logn)'y/s\+ s\ < Cr, in an event with probability at least 1 —n~¢1 —
—Cy
p

B — B3 < Cas)?, (24)
B =Bl < Cus, (25)

where Cy,Co,C3,Cy > 0 are constants, and Cyp, > 0 only depends on L.

Theorem 3.2 describes how the rate of convergence depends on the sample size n, the
dimension p, and the dependence adjusted norms which are characterized by ¢ and v. It
suggests that, under the short-range dependence with exponential moment conditions,
we can take A < (logp)®/n for some positive constants ci,co and ¢; < co. Based on
the scaling condition (logn)‘y/sA + sA < Cr, p is allowed to be of ultra high dimension
in that exp(n®) for some 0 < ¢ < 1.

Remark 3.3. In the setting of Theorem 3.2(ii), besides exponential moment, we also
assume X; and Y; are weakly dependent and satisfy the geometric moment contraction,
which is defined in (10). In other words, if X; and Y; have exponentially decay speed
of the functional dependence measures, then, a sharper convergence rate ofﬁ can be
achieved. In the order of the tuning parameter X in (23), max; || X j|la,cmcl|Y la,ame +
max; || X ;|13 ame contributes some additional dependence adjusted norm terms. Mean-
while, the term 1 in the power of the terms (logp + logn)! T+ + (logp + logn)! T2 is
introduced by the geometric moment contraction. The following Proposition 3.2 shows
the results in the case that the observations (X;,Y;) are i.i.d. and have exponential tail
bounds.

Proposition 3.2. Suppose Assumptions 1, 2, 3 and 4 hold. Assume that the observa-
tions (X;,Y;) are i.i.d. and sup,>, maxj,—1 7| X; 0], < co < o0, sup,s; ¢V |Yillg <
co < 00, where v,v > 0. Suppose that

5 llosp N (logp + logn) ¥ N (logp + logn)ZL-

n n

Then, as long as (logn)y/sA+ s\ < Co, in an event with probability at least 1 —n =1 —
p~2, (24) and (25) continue to hold, where Cy,C1,Cy > 0 are constants.

Again, both Theorem 3.2 and Proposition 3.2 show that the range of dimension p
is narrower than the range log(p) = o(n) in the ii.d. sub-Gaussian setting, and the
convergence rates of the estimated coefficient /3 are also slower. A

Theorems 3.1 and 3.2 also lead to the following result on the /., bound of g and
support recovery.
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Corollary 3.1. Let H(8*) = EH,(B*). Suppose the following incoherence condition
holds

| (B)ses (H(B)s9) | <n<1,

where || - ||oo denotes the lo, matriz operator norm. Further, suppose the conditions of
Theorem 8.1 (resp. Theorem 3.2(i) or 3.2(ii)) are satisfied. Then, as long as n?/7s\ +
s32X < Cp (resp. (logn)'sA + 532X < Cr), in an event with probability at least 1 —
C1(logp)™X — Cy(logp)~"/16 —n=1 — p=Cs (resp. 1 —n~ —p=©2), we have Bge =0
and

18 = B8%|oo < Coll (H(B")s5) ™" lloc,
where Cy, ...,C3 >0, Cr, > 0 depends on L, X is defined in (17) (resp. (20) or (23)).

Similarly to Corollary 3 in [46], the required scaling condition for support recovery
would be stronger than that for Theorem 3.1 or Theorem 3.2. It is also worth noting that
the incoherence condition in Corollary 3.1 can be removed by using various non-convex
regularizers, as shown in [46].

Remark 3.4. For i.i.d. data, the asymptotic behavior of Lasso estimator for GLM was
studied in [79]. Many other papers investigated high dimensional robust M-estimator, such
as [21] and [45]. A key technique used in these articles is Massarts inequality [50], Bous-
quet’s inequality [6] or other similar inequalities for empirical process. These inequalities
cannot be directly used for serially dependent data. It is noteworthy that the proofs of
Theorem 3.1 and 3.2 require new concentration inequalities for high dimensional time
series. We establish Bousquet-type inequality for time dependent data, which is shown in
the supplementary material.

Remark 3.5. The setting in our Theorems 3.1 and 3.2 is very general as it allows
dependent and/or non sub-Gaussian processes and it also allows heteroscedasticity in
that the error process and the covariate process can be dependent. Comparing with the
conditions in the i.i.d setting (Propositions 3.1 and 3.2), our Theorems 3.1 and 3.2
require an additional condition |f*| < L < oo to derive functional dependence measures
for temporal dependent processes.

3.4. Rate of convergence for the robust procedure
To tackle the problem of heavy-tailed data, we propose to use the robust regularization
method in Section 2.2, and analyze the robust estimator in this section. Under similar

assumptions, we establish LRSC of the proposed robust procedure.

Lemma 3.3. Assume |5*|1 < L < oo, |r"(z)] < My < oo and |r"(z1) — v’ (z2)] <
Mslzy — xo| with M3 < oo. Also assume EXiGj < C < oo, for any 1 < j < p,
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High Dimensional GLMs for Temporal Dependent Data 17

max|,|,—1 EI X, v)? < ¢y < o0, IX jll6,amc < oo for some constant 0 < p; < 1, and
p = min; p; € (0,1). Suppose A < (logn)+/(logp)/n and T < n'/*(logp)~1/*(logn)~1/2.
Let N = {B € RP: |3 — B*|2 < C15\%, 3 — B* € C(S)}, where C(S) is defined in (14).
Then, as long as s*>(logn)(logp/n)*/? < Ca, R, (B) satisfies LRSC(C(S), N, kxu/2,0) in
an event with probability at least 1 — p~©3, where Oy and Cy are positive constants and
C3 > 0 depends on L, p, and max; || X j||¢,amc.

The next theorem shows the rate of convergence of |B — 8%y and |ﬁ — B*|2 by the
dependence adjusted norms. In Theorem 3.3, the response is generated from a partic-
ular distribution in the exponential family. Therefore, there does not exist any model
misspecification issue, and the response has sub-exponential tails.

Theorem 3.3. Suppose Assumptions 1, 2, 3 and 4 hold. Assume |B*|1 < L < oo.
Also assume ]EX% < C < oo, for any 1 < j < p, max,|,—; E|X, v]? < ¢y < o0, and
EY < C < oo. Let ||X j|ls,amc < 0o for some constant 0 < p; < 1, ||Y||s,amc < o
for some constant 0 < p, < 1, ||Y.||y, < oo for v > 0, and p = min{p;,p,} € (0,1).
Choose T < n*/*(logp)~*/*(logn)~/2, and A = C1(logn)\/(logp)/n. Then, as long as
(logn)?**1(log p/n)/? + s%(logn)(log p/n)'/? < Csy, in an event with probability at least
1- n_CS _p_C47

~—

. 1 2]
B BB < s (M) (26)
210gp)1/2

- cus 5

3

~—

(27)

3

where C1, ..., Cg > 0 are constants depending on L, p, maxi<;<p || X jll6,amc and ||Y.||4,amc.

Corollary 3.2. If max;|Y;|] < C < oo, such as categorical variables, then, as long
as s*(logn)(logp/n)*/? < Cs, in an event with probability at least 1 — p~©*, the upper
bounds (26) and (27) hold.

Corollary 3.3. Let H(8*) = EH,(8*). Suppose the following incoherence condition
holds

HH(ﬁ*)SCS (H(ﬂ*)ss)_lHoo <n<lL

Also, suppose the conditions of Theorem 3.3 are satisfied. Choose A = Cy(logn)+/(logp)/n
and T =< n'/*(log p)~*/*(logn)~Y/2. Then,
as long as (logn)?**1(logp/n)'/? + s3(logn)(logp/n)'/? < Cy, in an event with proba-

bility at least 1 —n~% — p~%1, we have Bse = 0 and
18— B"|oo < Coll (H(B)ss) ™" llso(logn)y/(log p)/n,
where Cy, ...,Cs > 0 and depend on L, p, maxi<;<p || X jll6,amc and ||Y||s,cmc-
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Theorem 3.3 indicates that the robust estimator admits nearly the same rate as that of
the i.i.d. sub-Gaussian setting. It is much sharper than the deviation bounds in Theorem
3.1 under finite dependence adjusted norms, which will include a polynomial term of p if
11X |oolly.ax < p'/7. In comparison with the robust procedure in the i.i.d. case, we have
an additional logn factor when the result is generalized to the time series setting. Under
the scaling condition (logn)?*!(logp/n)'/? + s%(logn)(logp/n)'/? < Cy, our robust
regularization method in (6) can handle the ultra high dimension case with logp =
o(s~*(logn)~2n + (logn)~%~2n), which is much wider than the range of Theorem 3.1,
which only allows a polynomial increase with n. In the robust procedure, the order of
7 is not related to the finite moment condition. Only the constant term of 7 should
be adapted to the degree of heavy-tailedness. Comparing Corollary 3.3 with Corollary
3.1, the support recovery guarantee and the ¢, bound are also improved by the robust
procedure.

Remark 3.6. The requirement of geometric moment contraction (exponentially de-
caying dependence measure) is needed. In the high dimensional setting, concentration
inequalities are the cornerstone for theoretical analysis. [13] showed that exponential de-
cay bounds for large deviation type tail probabilities do not hold generally with polynomial
decaying functional dependence measures as defined in (9), i.e. > oo 845 = O(m™%),
even if the process is uniformly bounded. In other words, if the temporal dependence is
not very weak, any robust reqularized M -estimators for observations with finite moments
are not able to achieve statistical error rates close to the optimal rates under the i.i.d.
sub-Gaussian case, and can only handle the dimensionality p = o(n®) for some ¢ > 0.
This is significantly different from the low dimensional M -estimates, where polynomial
decaying dependence measures and even long-range dependent process can be applied; see
for example [83].

4. Linear Regression

Robust estimation of linear regression can be regarded as a generalized linear model with
quadratic loss. In this special case, although the first derivative of the loss function is not
bounded, we still have an explicit concentration result for our robust estimator. Consider
the usual linear regression setup for the response variable Y; and the covariate vector X,

Yi =X 8" +e (28)

where 8* € RP is the unknown parameter vector to be estimated and e; is the error
term. Let the loss function R(f3(X;),Y:) = (Yi — f5(X;))?/2. Differently from Theorem
3.3 in Section 3, if the error has heavy tails, the response Y; also has heavy tails. This
motivates us to truncate both the heavy tailed covariates X; and the response Y; under
the ¢5 loss. Then, similarly to (6), we propose to use the following M-estimator of S*
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with the generalized f5 loss to robustify the estimation:

R 1 &~ ~
§:= argmin {Qn ;(Yi — f3(X3)* + A lb’ll} ; (29)
where
fa(Xi) = X' B. (30)

Here, we choose Y; = Y;(r1) = sgn(Y;)([Y;| A 71) and )?ij = sgn(X;;)(|X;;| A m2) for all
1 < j < p, where both 7, and 7 are predetermined thresholds.

To be solvable in the high dimensional regression setting, 8* is usually assumed to
be sparse or weakly sparse, i.e., many elements of 8* are 0 or small. In particular, we
impose the following weak sparsity condition and a condition on the covariance matrix
of the covariates.

Assumption 5. (Weak Sparsity Condition). There exits some 0 < ¥ < 1, with a
uniform radius Ky, such that

p
Z 871" < Ky. (31)
j=1

Note that Ky might depend onn and p. In the special case 9 = 0, this quantity corresponds
to an exact sparsity constraint—that is, 8* has at most Koy nonzero entries.

Assumption 6. Suppose EX; = 0 and there exists a constant kg > 0 such that
Amm(]EXleT) 2 RQ-

To derive the statistical error rate of B, we establish, in the following lemma, the
restricted strong convexity of the robust procedure.

Lemma 4.1. Assume EX;*J- < C < o0, for any 1 < j < p. Let | X jlla,amc < 00

for some constant 0 < p; < 1. Choose T < n'/*(logp)~'/*(logn)~1/2. Then, for some
constants Cy,Cy > 0, which only depend on min; p; and max; || X ;|l4,cmc, we have

I ot o 1
P (n S BTXXT B2 BT XX~ Callog)y| 2RI, VB € RP) <p .
i=1
(32)
Finally, in the following Theorem 4.1, we present the statistical error rate of B as
defined in (29). We show that |8 — 5*|2 and |3 — 8*|; are upper bounded by nearly

optimal rates under light tails and i.i.d. data so long as the tuning parameters 7, 75 and
A are properly chosen. Corollary 4.1 concerns support recovery and ¢, bounds.
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Theorem 4.1. Suppose Assumptions 5 and 6 hold. Assume |f*|1 < L < co. Also as-
sume max; Eij < C < oo and EY* < C < co. Let || X jlla,cmc < 0o for some constant
0<p; <1, |Y]ls,amc < 00 for some constant 0 < p, < 1, and p = min{p;, p,} € (0,1).

Choose 11 =< 5 =< n"/*(logp)~Y*(logn)~'/? and A = C,(logn)\/(logp)/n. Then, as

long as Ky[(logn)?(logp)/n]1=9/2 < Cy, we have, in an event with probability at least
1- p7C'3’
5 logn)2logp\ ' ~"/?
b5 < Carcy (RETER) (33)
. . logn)? lo (1=0)/2
55l < oty (BB ) T (39

where C1, ...,Cs5 > 0 depend on L, p, maxi<;<, | X jlla,amc and |Y]|s,cMmc-

Corollary 4.1. Consider the exact sparsity case with Ko = s. Let ¥ = ]E(XzXZT)
Suppose the following incoherence condition holds

HZSCS (Ess)_lH <n<l
o0

Suppose also the conditions of Theorem 4.1 are satisfied. Choose A = C1(logn)+/(logp)/n
and 1 < 5 = n'/*(logp)~Y4(logn)~'/2. Then, as long as s[(logn)?(logp)/n]'/? < Cy,
Cs  we have Bge =0 and

B — B < Coll (Ss5) ™" [l (logn)/(log p) /,

where Cy, ...,C5 > 0 depend on L, p, maxi<;<p || X jlla,amc and ||Y.

in an event with probability at least 1 — p~

la,aMmC-

Theorem 4.1 reveals that | 3—(*|5 has a convergence rate Ké/z[(log n)?(logp)/n]'/2=0/4,
In comparison with the optimal rate for weak sparsity models under light tails and
i.i.d data setting [64], our result concerns high dimensional time series and relaxes the
Gaussian/sub-Gaussian assumption to the existence of finite moments at the minor cost
of a logarithmic factor of m in the convergence rate. In a special case that ¥ = 0,
|3 — B*|2 converges at the rate Ké/z(logn)((logp)/n)lp, where Ky is the number of
non-zero elements of 5*. It suggests that our robust method does not lose much infor-
mation for heavy-tailed data with exponentially decaying functional dependence mea-
sures. In addition, to achieve the desired statistical rate, we need the scaling condition
Ky(logn)(logp/n)(1=9)/2 < ¢y, which also includes an additional logn factor.

Remark 4.1. Theorem 2 in [23] studied robust linear regression in the i.i.d. case and
suggested X =< /logp/n to achieve the minimaz optimal rate for B In comparison,
there is an additional multiplicative logn term in the order of A\ and also the conver-
gence rates for the dependent case, which is induced by the additional order (logn)? in
the Bernstein-type inequality under geometric moment contraction (see the supplemen-
tary materials), which serves as the main technical tool. To the best of our knowledge,
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the sharpest available Bernstein-type inequalities for weakly dependent random variables
without any structural assumptions (such as linear process) involve additional logn terms
[53, 88].

5. Simulation Study

In this section, we expound upon some concrete instances of our theoretical results and
provide some simulation results. We assess the finite sample performance of the robust
procedure and compare it with the standard Lasso procedure in logistic regression and
linear regression. The implementation of our robust procedure is simple: truncate or
shrink the data appropriately, then apply the standard procedure to the transformed
data. The simulation results are based on 5000 independent Monte Carlo replications.
We select the optimal values of tuning parameters A and 7 by a two dimensional grid
search using Bayesian information criterion. It is worth noting that the robust cross-
validation proposed in [23] can also be used by replacing the K-fold cross-validation with
time series rolling forecast.

We first specify the parameters of the logistic regression. We generate data from in-
dependent AR(1) processes, say

Zij=¢iZi—15+ &, 1<j<p, (35)

where ¢; ~ U[0.2,0.6] or ¢; ~ U[—0.6,—0.2], and the innovations a,; is given below. To
generate cross-dependence, let

2= (o) = (M), 0<p<i,

and Y2 be the square-root matrix of ¥. We use X; = 2/2Z,, 1 < i < n, where
Z; = (Zi1,..., Zip)'. We choose the true regression coefficient vector as

B* = (3,...,3,0,...,0),

where the first 20 elements are all 3 and the rest are all 0. Let ; = 1/(14exp(—X/3*)) be
the probability of success of the Bernoulli distribution of Y;. Thus, Y; is a random draw
from Bernoulli(d;). We run the simulations for sample sizes n = 200, 300, 400, 500, 800,
1000, 2000, 3000, and choose the number of parameters p to be 400, dependence parameter
p = 0.5. For each case, additional 500 observations are generated and used for out-of-
sample predictions. To entertain various shapes of covariate distributions, we consider
the following two scenarios for &;; of (35):

1. &; = 0.1ts, i.e. the Student-t distribution with 5 degrees of freedom divided by 10;
2. &; = 0.2log Normal(0,0.5%), i.e. a log-normal distribution with parameters 0 and
0.252 divided by 5.

They represent heavy-tailed symmetric and asymmetric distributions, respectively. To
meet the model assumptions, the covariates are standardized to have mean 0. The con-
stants used are chosen to ensure appropriate signal-to-noise ratio and 6; not trivially
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equals to either 0 or 1 for better presentation. The numerical performance of the robust
procedure and standard Lasso procedure under the two scenarios is evaluated by the
following five measurements.

1. £5 error, which is defined as \B — B*2;

2. {1 error, which is defined as \B — B*1;

3. the number of false positive results, FP, which is the number of noise covariates
that are selected;

4. the number of false negative results, FN, which is the number of signal covariates
that are not selected;

5. one-step-ahead forecast errors of a total of 500 out-of-sample observations, FE,
which is the misclassification rate.

For the robust Lasso, we choose the optimal tuning parameters A and 7 on the basis
of 100 independent validation data sets. For each case, we run a two-dimensional grid
search to find the best (X, 7) pair that minimizes the misclassification rate of the 100
validation data sets. Then the optimal pair is used in the simulation. Similar methods
are applied in choosing the tuning optimal parameters in other models. The means, over
5000 repetitions, of the five performance measures are summarized in Table 1.

The results of Table 1 show that our robust Lasso method has certain advantages
over the standard Lasso method when the covariates are heavy-tailed. The results are in
agreement with the theorems. As the sample size increases, the performance measures
improve. In both symmetric and asymmetric covariates cases, our robust method has
smaller /1 and {5 errors. The advantage of the proposed robust method is more pro-
nounced when the sample size is large. In addition, FP increases slightly with the sample
size n, but FN approaches zero as n increases.

We also investigate the empirical properties of the proposed method in linear regres-
sion. We again generate data from independent AR(1) model (35). Analogously to the
logistic regression, we set X; = ©1/2Z;. For response, we generate time series process Y;
from the model,

Y; = X" +e, (36)

where e; is given below. The following two scenarios for &;; are considered:

1. the Student-t distribution with 5 degrees of freedom, t5;
2. a log-normal distribution with parameters 0 and 0.252, logNormal(0, 0.252).

For the distribution of error e;, we choose:

1. e; = 20t3, i.e. a Student-t distribution with 3 degrees of freedom multiplied by 20,
the standard deviation of which is about 34.64;

2. e; = 20logNormal(0,0.5%), i.e. a log-normal distribution with parameters 0 and
0.52 times 20, the standard deviation of which is about 12.08.

Again, the covariates and the errors are standardized to have mean 0, and the constants
used are chosen to ensure appropriate signal-to-noise ratio for better presentation. We set
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Table 1. Simulation results of Lasso and robust Lasso (RLasso) for logistic regression
(p = 400, p = 0.5), where n is the sample size. The results are averages over 5000 replications.

Student t5 LogNormal(0, 0.25)

n Scenario Lasso  RLasso Lasso RLasso
l2 loss 11.53 11.32 11.59 11.39

01 loss 50.14 48.38 50.30 48.60

200 FP 0.96 0.88 0.88 0.79
FN 11.30 10.85 11.84 11.41

FE 28.11%  27.24%  29.08% 28.50%

£2 loss 10.22 9.85 10.28 9.94

£1 loss 43.69 40.89 43.80 41.15

300 FP 1.69 1.51 1.61 1.44
FN 5.98 5.37 6.59 5.92

FE 22.02%  20.82%  23.09% 22.00%

£2 loss 9.46 8.95 9.48 9.05

01 loss 40.21 36.62 40.10 36.85

400 FP 2.28 2.04 2.24 1.97
FN 3.53 3.08 4.08 3.44

FE 20.33%  19.24%  21.34% 20.23%

l2 loss 8.87 8.28 8.88 8.34

01 loss 37.56 33.51 37.38 33.61

500 FP 2.64 2.32 2.54 2.23
FN 2.23 1.84 2.66 2.14

FE 19.44%  18.37%  20.40% 19.33%

l2 loss 7.66 6.82 7.67 6.93

£1 loss 32.39 27.29 32.15 27.52

800 FP 3.28 2.94 3.12 2.71
FN 0.56 0.41 0.79 0.53

FE 18.18%  17.17%  19.22% 18.13%

l2 loss 7.15 6.20 7.11 6.26

£1 loss 30.27 24.71 29.85 24.82

1000 FP 3.49 3.13 3.38 2.96
FN 0.24 0.17 0.35 0.22

FE 17.83% 16.82% 18.83% 17.77%

£2 loss 5.67 4.42 5.61 4.43

£1 loss 24.15 17.48 23.69 17.51

2000 FP 3.82 3.50 3.69 3.34
FN 0.0018 0.0008 0.0060 0.0014

FE 17.19%  16.22%  18.12% 17.05%

l2 loss 4.92 3.53 4.84 3.52

01 loss 21.07 13.87 20.50 13.90

3000 FP 3.90 3.56 3.79 3.41
FN 0 0 0 0

FE 16.94% 15.98% 17.97% 16.93%
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n = 50, 100, 200, 300, 400, 800, 1000, 2000, and use the root mean squared forecast error
(RMSE) to measure one-step-ahead forecasts of a total of 200 out-of-sample predictions.
The results are reported in Table 2.

The results of Table 2 are also in agreement with the theorem. In particular, as ex-
pected, the RMSE approaches the standard deviation of e; as the sample size increases.
In general, similarly to the logistic regression, the robust estimator outperforms the non-
robust one. This is particularly so for the case of heavy-tailed noises e; ~ 20t3. But as
the sample size increases, the difference between the robust procedure and the standard
procedure gradually decreases. The out-of-sample predictions seem to work well when
the sample size n > p. For log-normal errors, FN seems to be higher than FP. Both are
sizable when the sample size is small.

In conclusion, our robust method is more flexible than the standard Lasso. The above
two simultation studies show clearly that the robust procedure outperforms the standard
procedure under the setting with heavy-tailed covariates and errors. The truncation pa-
rameter enables the robust method to render consistently satisfactory results under all
scenarios considered in our simulation.

Next, we assess the sensitivity of the robust procedures in linear regression with respect
to the thresholds 7 and 5. We use the same model setting as before for (36), and consider
a heavy-tail case with t5 features and t3 noises, and a light-tail case with normally
distributed covariates and noises. We set n = 100,800, p = 400, and choose different
quantiles of the feature values and responses as the thresholds 71, 7. Table 3 shows the
{5 and #; loss of the estimated coefficients B using different values of threshold 71, 75 over
1000 replications. When 7 and 72 are set to be the 100% quantile, the procedure becomes
the original Lasso method without any shrinkage. For the heavy-tail setting, our robust
procedure has smaller ¢5 and ¢y estimation error than the vanilla Lasso method in all
cases. For the light-tail setting, our shrinkage method loses some efficiency on ¢ and ¢;
estimation error. Moreover, if 71, 7o are set to be above the 90% quantiles of the original
feature values and responses, the difference between robust and non-robust methods in
terms of estimation error is less than 2%.

Finally, we compare our proposed truncation method with the standard method un-
der different degrees of the cross-sectional dependence of the covariates. The setup
is the same as that used before in (36). We choose n = 200, p = 400, but vary
p =0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.98. The numerical result is based on 1000 in-
dependent Monte Carlo experiments. It can be seen from Table 4 that the proposed
truncation method shows significant improvement in the statistical performance over the
standard method in all cases of p. In addition, the differences in ¢5 and ¢; loss for differ-
ent values of p are minor. Note that the condition number of the population covariance
increases as p grows, but is not too large.

6. Discussion

In this paper, we first established the statistical error bounds and the support recovery
guarantees of high dimensional generalized linear models in time series setting. Both finite
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Table 2. Simulation results of Lasso and robust Lasso (RLasso) for linear regression
(p = 400, p = 0.5), where n is the sample size and the results are averages over 5000 replications

Student ¢ LogNormal

n Scenario Lasso  RLasso Lasso  RLasso
02 loss 24.01 22.31 35.11 31.90

£1 loss 148.01 140.39  218.33 201.09

50 FP 44.26 44.12 47.52 47.31
FN 12.23 12.16 15.12 14.94

RMSE 49.86 48.10 16.46 15.78

£2 loss 25.29 23.44 40.86 37.04

01 loss 200.83 187.76  331.69 302.13

100 FP 51.31 50.79 57.69 57.12
FN 8.05 7.73 11.52 11.18

RMSE 49.72 47.66 17.19 16.39

£2 loss 12.46 11.04 24.52 22.78

01 loss 66.12 52.68  205.78 187.80

200 FP 11.89 7.83 33.56 31.73
FN 7.19 5.85 11.06 10.64

RMSE 40.84 39.13 15.10 14.73

{2 loss 9.67 8.03 12.64 10.36

41 loss 39.98 36.83 55.58 52.13

300 FP 3.49 3.34 7.81 7.91
FN 5.78 4.47 10.30 10.25

RMSE 38.25 37.37 13.34 13.26

{2 loss 8.77 8.04 11.72 9.24

£y loss 37.53 32.60 50.27 47.80

400 FP 2.99 2.82 1.50 1.71
FN 3.67 2.67 10.27 9.51

RMSE 37.04 36.18 13.13 13.01

lo loss 6.42 5.78 9.44 8.95

41 loss 25.13 22.34 38.17 36.04

800 FP 2.56 2.52 1.37 1.61
FN 0.86 0.41 5.94 4.67

RMSE 35.11 34.65 12.58 12.51

£ loss 5.79 5.15 8.75 8.28

41 loss 22.53 19.84 34.74 32.82

1000 FP 2.58 2.49 0.71 0.90
FN 0.45 0.16 4.29 3.29

RMSE 34.82 34.42 12.46 12.40

{2 loss 4.11 3.56 6.69 6.22

£ loss 15.85 12.60 25.65 23.94

2000 FP 2.22 2.13 0.39 0.49
FN 0.0376 0.0014 1.10 0.67

RMSE 34.39 34.14 12.26 12.23
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Table 3. Sensitivity of different values of thresholds 71 and 72 in linear regression case using the upper
quantiles of the feature values and responses. The results are based on 1000 replications.

70% 75% 80% 85% 90% 95% 98% 99%  99.5% 100%

Student ¢ and n = 100, p = 400

4o loss 23.51 23.39 23.30 23.25 23.29 23.45 23.82 24.15 24.53 25.70
f1 loss 188.56 187.21 186.08 185.24 185.35 186.49 189.38 192.26 195.41  204.39

Student ¢ and n = 800, p = 400

£ loss 6.08 5.98 5.88 5.82 5.76 5.80 5.91 6.00 6.11 6.62
£ loss 23.59 23.15 22.77 22.48 22.35 22.44 22.91 23.29 23.72 26.05

Normal and n = 100, p = 400

{2 loss 20.72 20.53 20.36 20.20 20.09 19.97 19.90 19.91 19.92 19.91
f1loss 166.34 164.38 162.44 160.72 159.35 158.14 157.52 157.41 157.36 157.26

Normal and n = 800, p = 400

4o loss 5.77 5.62 5.50 5.36 5.24 5.10 5.03 5.02 5.00 5.00
£y loss 22.50 21.90 21.34 20.79 20.32 19.80 19.52 19.45 19.39 19.38

Table 4. Sensitivity of different values of the cross-sectional dependence of the covariates (p) in linear
regression. The results are based on 1000 replications.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.98
Standard procedure
l2 loss 12.36 12.29 1243 12,54 12.23 12.63 1230 12.33 12.54 12.78
l1 loss  65.11 64.10 6548 6743 63.23 67.68 64.87 6524 67.85 70.75
Robust procedure
ly loss 10.93 10.88 10.77 10.78 10.81 11.11 10.88 11.03 11.04 10.89
l1loss 5147 51.15 48.89 49.40 49.64 53.84 51.06 53.44 53.14 51.28

polynomial moment case and exponential moment case are studied. In the finite moment
case with geometric moment contraction, we also proposed a new robust M-estimator
by shrinking the feature variables (and the response in linear regression) before solving
the empirical risk minimization. The shrinkage method works as if we have sub-Gaussian
data, and does not require any algorithmic adaptation. Our robust procedure marks a
significant improvement over the existing literature in the time series setting by relaxing
the sub-Gaussian condition to the existence of finite moments but retaining a nearly i.i.d.
sub-Gaussian deviation bound.

It is worth mentioning that high dimensional time series creates overwhelming tech-
nical difficulties in theoretical analysis. Commonly used concentration inequalities in the
i.i.d. case do not hold. For example, the sharpest available Bernstein-type inequalities for
weakly dependent random variables without any structural assumptions (such as linear
process) involve additional logarithmic factors. Whether the large deviation bound under
the i.i.d. setting is achievable or not remains a challenging open problem. We conjecture
that the scaling condition in the main theorems may be improved by developing sharper
concentration inequalities.

Besides the concentration inequalities, there are many future research directions to
pursue. The first direction is to study the single index model or the additive regression in
time series setting using the framework of the functional dependence measure. Another
interesting problem is the robust regularized estimation in some special high dimensional
time series models, such as vector autoregressive (VAR) model, vector autoregressions
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with heteroskedasticity, etc. By exploiting the model structure more explicitly, better
statistical error bounds may be established. In addition, though many inferential theories
have been developed recently for high dimensional VAR models, the statistical inference
problem in high dimensional time series regression remains an important and challenging
task to investigate.
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Supplementary Material to “High
Dimensional Generalized Linear Models for
Temporal Dependent Data”

YUEFENG HAN, RUEY S. TSAY, and WEI BIAO WU

Appendix A: Concentration Inequalities for High
Dimensional Time Series

The proofs of main theorems require additional new concentration inequalities for high
dimensional time series. Analogously to Bousquet’s inequality ([6]) for i.i.d data, we
present concentration inequalities for both heavy-tailed and light-tailed high dimensional
time series under the framework of functional dependence measure. The result may be of
independent interest. Without loss of generality, assume EX;; = 0 in this section. Denote
‘7:21 = O'(El, ...,{-ji) with | <1, F; = O'(' .- ,61_1,61'). Write Pl() = E(|fl) — E(~|]:l_1). The
same notation as that in the main paper is used.

Theorem A.1. Lett = logpV 1 and Cyo be a constant depending on q and .
Assume ||| X |ocll, o < 00, where ¢ > 2 and o > 0. (i) If @ > 1/2 —1/q, then for

2 Vntmaxi<j<p | Xl o + 09 | X ||
2
nmaxi<;j<p | X5,

|
(37)

(it) If 0 < o <1/2=1/q, then for x 2 Vntmaxi<j<p [| X, , + 02032 ||| X | oo |

( ) Caan® 24142 || X.|oc
P >z | <

x4
Proof. For t = 1V logp, note that for any vector u = (u1,...,u,)", [l < |uls
P oo = e|t|oo. Let L = |logn/log2|, 7 = 2t if 1 <1 < L, 7, = n and 10 =
To simplify the notation, let W, = Y7 | X;, Wy ko = >oi  E(X;lei—k, ovei), Xig
E(X;|ei—k, -..s€i). Define Q= Wy -, — Wy, 5, for 1 <1 < L, and write

q,a’?

Cant?? || X || 2
Zl‘> < g, Il |oqu,a O exp | — CyaT .
x4 ’
oo

n

>

i=1

q,a’?

q
C 2
L2 4 Cy 0 exp ( g.0% ) :

nmaxi<;<p ||X] ||3,a
(38)

n

S x

i=1

I =IA

L
W, = Wn70 + Wy — Wn,n + Z Qn,l- (39)
=1
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Note that Wy, , — Wy 0 = Zle Qn,- By Lemma A.1 and Jensen’s inequality,

Y ECGIFT) — E(XGIF )]

i=1

|||Wn,k+1 - kaIOOHq =

tllg

< Cqv/nt [[[B(X|F 1) — BCGIF M),
< OVt ||| = Xiimnal, |,
< CyVntwii1,q-

Then,

o0 oo
Wi = Wanloollg < Z Wi k1 = Wakloollg < Z CyVntwygy1,g = CmenJrl,q'

k=n k=n

By Markov’s inequality, we have

< [[Wy, — Wn,ang < CQ<nt)Q/ZQ1('IL+1,q.

P(|Wy, = Wyl > x) (40)

xd xd

Note that Q41,4 < ||| X |oollg,an ™%

Recall X; o = E(X;le;) and W, 0 = > ; E[X;|e;]. Note that E[X;|e;] are independent
for different i. By Fuk-Nagaev inequality in Lemma D.2 of [17], we have
Cya P iy Emaxicjcp [E[Xile]|*

P(|Wh,0leo — 2E|Wn,0|oo >x) < —

x? >
+ ex - n
p( 3maxi<j<p ) iy E[E[X;|e:]|?
Curllolely o N

- 1 ~ 3nmaxi<j<p | Xijoll3

Then, by Lemma D.3 of [17],

n
E[Wooloo S VE, | max Y E(E[X,[ei])? + t\/IE max max [E[X; |e;]]2
J ? J

i=1
1/q
< Vnt max [ Xijoll2 + tnl/d {EmaX |E[Xi|5i]|q]
J J
S \/Emjax 1 Xij.0ll2 + tn'/ )| X5 0lsol4-

Hence E|W,, 0|co S @, which implies that

~

CTL Xi 00 q 2
GOrliXioloelld | ¢ e (—z ) (41)

P(|W, >z <
(Wnoleo 2 7)< nmax; || Xijoll3

x4
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High Dimensional GLMs for Temporal Dependent Data 3

Finally, for each 1 <! < L and 1 <i¢ < |n/7], define

1T AN
Z’i,l = Z |:]E(X1|JT‘.]§7TL) — E(Xi|./_'.:_7—[71):| 3
kZ(i—l)Tl—‘rl
o= > Zig and U= > Z.
3 is even 7 is odd

Let c=¢q/2—1—aq, \y =1?/(n?/3)if 1 <1< L/2and \, = (L+1-1)"2/(x2/3) if
L/2 <1 < L. Then, Zlel At < 1. Since Z;; and Z;s; are independent for |i —i'| > 1, by
Lemma A.2

Cq Z E|Zi>l|g

i is )\l.’b)z
P(lU¢ _9R|U® > )\lx < i is even +exp | — ( ,
(| n,l|t ‘ n,l‘t ) ()\l-r)q 3 Z |0-Zi,z %
i is even
where O'ZU = (||Zi1,l||27 ciey ||Zim7l||2)—r.

By Lemma A.1, we can obtain

T
tlg € Co(mt) Py, where Gy g = > wig < 751X |scllgua-
T—1+1

11231

Similarly, we can define 51’2,3-. By Theorem 3.2 of [10] and Jensen’s inequality,

Tl
o<V Y |[EXGIFTR - EXlF Y,
k=1 _1+1

TI
SV Yo I X = Xija-alle

k=1,_1+1

Tl
SVTY Okay

k=1_1+1
= \/Tlél)g’j.

This implies that oz, ,|; < max; /7i7,_7[|X.jl2,a- So we obtain, for x > 0,

[1Zij.l

P(|Uﬁ,l|t - 2E|U§,l|t > \x)

IN

2—1~

Cq”tq/leq/ wqu CquQxQTf_"‘l
~+exp| ——m————
A xd

Cant?/? 71X Lo Cyz*Arie

g7 T T WA eollga ( g AT Dy )

- :
x4 Al

nmax; [ Xjll2,a

" nmax; | X2
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By Lemma 8 in [16],

e 2
ElUS e < NG max EZ}, +t /EmlaxmaXlel
7 is even

< WVt max EZ2, + t(n/m)" )| Zialellq
’LIS even
< tmjaxélz +ntagdl2t 2 g,
S vnt maXTziaHX-jHQ,a + nl/qt3/27176/q”|X~|oo||q,a'
J

Notice that Aflﬁ'c/q < n®4 for ¢ > 0 and ming>o )\mic/q > 1 for ¢ < 0 and ming>g A7 >
1. Hence E|U, l|t < )\lx always holds. Therefore,

q/2—1
antq/z . Tl ’Tl 1q|||X |oqua e ( 04;1;2)\27'1 1 > (42)

P(|UE e > Nz) < —
(Uil 2 Mz} < x4 A nmax; [ X.jl|2,a

A similar inequality holds for U? ;. Let

L ¢ L 212, 2a
T Csx A\ T
= E - and B = E exXpy ————————+—— %,
= A { nmax; ||X]||§a

=1

Since 32y & < 1 and |Quule < |US le + U2, |, by (42),

L L
P(| Y Quil > 22) > P(1Quile = 2N)

<
=1 =1
L
< Z[ (1Usile = M) + P(|UR 1|0 = Nz)]
Cont
< = “ A4 C1B. (43)

x4

Let 9 := min;>; )\lleQD‘ > 0. By the definition of 7; and A; and by elementary calculations,
there exists a constant Cg > 1 such that for all y > 1,

L
Z exp { —CsyAj77* } < Csexp{—Csy}. (44)

We apply (44) with y = 2?/(nmax; [| X ;[3 ,). If ¢ > 0, it can be obtained that A <
CoAf < Cyn®. If ¢ < 0, then A < C4g. Hence, combining (39), (40), (41), (43) and (44),
if ¢ >0 and x > Vntmax; | X.jla,a +nt/T 9432 X ||

q,0

Cq,a372 } Cq,anc+1tq/2|||X~|00||g,

nmax; | X3

=, (45)

x4

P(|Whl|t > x) < exp {—
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High Dimensional GLMs for Temporal Dependent Data 5

if c <0 and z 2 Vntmax; || X.j]2,q +n1/qt3/2\||X.\m||q_’a,

Cyat® Coant?[[|X.|oo I8
P(|Wale > 2) < — o L =3 46
(Wle =) = e"p{ s, ||X.j||§,a} e 1o
By (45) and (46), both cases with ¢ < 0 and ¢ > 0 of Theorem A.1 follow.
O

Theorem A.2. (i). Assume [||X ||, < oo, where v > 0. Let a = 2/(1 +2v), then
there exists a constant C,, > 0 depending on v such that

xa
) > e - ) 47
< - x) S ( Qea(nlogp)a/2|||X~|O<>iu> "

(i). Assume || X 5|, < oo, wherev > 0. Let v =2/(1+2v), then there exists a constant
C,, > 0 depending on v such that
x

P Xii| > <C, — . 48
<Z il Z l‘) < eXp( 2ea(n)a/2X.j||$y> (48)

i=1
Proof. We only prove part (i), as the proof of part (ii) is similar. Let ug = (ea[|[ X | |l, )~

n

S

i=1

and t = 1V logp. Note that for any vector u = (u1,...,up) ", |u]oo < |ult < p/*|ule =
e|ulo. Let L = |logn/log2|, 7 =2"if1 <1< L,7, =nand 7o = 0. Let W,, = > | X;,
ka = Z?:l E(X”é‘i_k,...,é“i), Xi,k = E(X”Ei_k-,...,é‘i). Deﬁne Qn,l = Z?:l 'Pi_le'.
Then, @, is a martingale. By Lemma A.1 and Jensen’s inequality,

[@nilsolly < CVant [[E(X:|Fir) — E(Xi|Fii-1)lel,
< OVagnt ||| X; — Xi,i—l|t”q
CvVanitwy 4.

N

Then,
IWalelg <D M@nalells < Y CVantwry = CVaniQo,,.
1=0 1=0

Let Z, = W, /(v/nt). Then |||Z,|lq < C\/q%%,q. Write the negative binomial expansion
(1—s)7Y2 = 14377, axs®, where [s| < 1 and aj, = (2k)!/(2%*(k!)?). By Stirling’s
formula, as k — oo, ay ~ (km)~'/2. Hence k! ~ v/2(k/e)*a; ', and there exist absolute
constants c¢1,co > 0 such that cl(k’/e)kalz1 < k!l < cz(k‘/e)ka;l holds for all £ > 1. If
ak > 2, we have Qg o < (ak)”||| X |oo ||, - Hence, by elementary manipulations,

a1 Zalg Il wek) ™ PE,  aru

BT ak/oka T e

(49)
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If ak < 2, then ||| Zn|t]lak < 11 Znlell2 < 27]|| X oo, - Using e* = ZZOZO x* /!, we obtain,

2” X. aruf
supEexp {u|Z,|f} < 1+ Z I |oo||wy + Z kk
" cru

1<k<2/a E>2/c
/
S 1+caZak%
k=1
< 1+4ca u/uo

(1 —u/ug)t/?’

where constants ¢, ¢, > 0 only depend on . Let u = ug/2, then sup,, Eexp {u|Z,[} <
1+ co/+/2. Hence,

P(|Wali =2 x) = P(|Zn]: =

—=) < (1+Ca/\[)exp{ 2a(nt)“/a;|X-°°”$u}. (50)

f

Clearly, Theorem A.2(i) follows from (50).
O

Theorem A.3. Assume EX; =0, |X;| < M for all i, and || X.||2,amc < oo for some
p € (0,1). Also assume n > 4V (log(p~1)/2). For any x > 0,

n 2
X
PSS Xi>z) < - , 1
(Z 2 5”) = eXp{ 40 (n]| X3 cue + M2) + 20> M (log n)Qac} (51)

i=1

where Cl = 2max{(e*—5)/4, [p(1—p)log(p~ )]} (8\/10g( “1))2, Cy = max{(clog2)~1,[1V
(log(p~1)/8)]} with ¢ = [log(p~*)/8] A \/(log 2) log(p~1) /4.

Proof. See Theorem 2.1 in [88]. O

Theorem A.4. AssumeEX,; =0, P(|X;| > x) < ¢1 exp(—coz”) for somev > 0,¢1,co >
0, and | X ||l2.amc < oo for some p € (0,1). For any x > 0,

72 xu/(1+y)
P > x| <exp +nexp | ————
Cl(l+”||X||2 aMe) < Cy )

2 1.1//(1+1/)2 5
te | =G o | Grliogapr | ) 2

where Cy,Cq,C5,Cy > 0 are constants only depending on p.

n

> X

i=1

Proof. Consider the coefficient 7(M, X) of weak dependence in [53], which is defined by

T(M, X) = || sup [Ef(X[M)—Ef(X)]

FeAL(RF)

1
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High Dimensional GLMs for Temporal Dependent Data 7

where A;(RF) is the set of 1-Lipschitz functions from R* to R. The 7-mixing coefficients
7(i) of a sequence of random variables X; are then defined by

1 . . .
(1) = ilirglrg?é(kzsup {r(0(X;,7 <0),(Xjy, ., Xj,))si < j1 <o+ < e}

By the definition of geometric moment contraction and || X.|2.amc < 0o, we have

T(Z) S COpi7

for some positive constant cg.

For any M > 0, let hps(z) = (2 A M)V (—M). Define the projection operator P;(-) =
E(-lej,ej-1,-..) — E(:]ej—1,€j-2,...). Then we can write X; = Y 7° P, X;. By the
orthogonality of P;, the triangle inequality and the Hoélder inequality, we have

|COV(X0,Xk)| = ’ ZE[('Ptho) th ’ Z ‘E hXO th)]
h=0

< Z IP_rXoll2l|P=pXkll2 < Z5h,25h,+k,27
h=0 h—0

where the last step follows by the fact that [|P;X;[l2 < 0;—j2 = [[Xi—j — Xi—j {o1]l2 in
view of Jensen’s inequality. It follows that

D 1Cov(Xo, Xi) <20 dnabnikz < 20X |15 cuic- (53)
—— k=0 h=0

Hence, by the Lipschitz continuity of the function hps(x) and the bound |k ()] < M,

V = sup sup | Var(hy (X)) +2 Y [Cov(har (X;), har (X))
M>0 >0 >

0o
> |Cov(Xo, Xi)| < 2/I1X.[13 guc-
k=—oc0

As P(|X;| > x) < exp(—ca) for some v > 0, applying Theorem 1 in [53] with 1/y =
1+ 1/v therein, we have the desired results.
O

Lemma A.1. Let D;, 1 <i < n, be p-dimensional martingale difference vectors with
respect to the o-field G;. Let s > 1 and ¢ > 2. Then

1/2
ZE (ID:il21Gi- 1] :

q

D1+ ...+ Dulsllg < ¢4 gqllsup |Dilsllg + Va(s = 1)
K3

where ¢ is an absolute constant.
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Lemma A.1 provides a Rosenthal-Burkholder type bound on moments of Banach-
spaced martingales and follows from Theorem 4.1 of [59].

Lemma A.2. Assume s > 1. Let Xy,...,X,, be p-dimensional independent random
vectors with mean zero such that for some q¢ > 2, ||| Xilsllq < o0, 1 < i < n. Let

T,=>",X; and o; = (| Xatll2s-- -, | Xipll2) T Then, for any y > 0,

n 2
- Y
BT, 2 26T +9) < Ot DB e (o). 60
i=1 =1 tls

where Cy is a positive constant depending only on q.

Proof. See Lemma C.6 in [89]. O

Appendix B: Quasi log-likelihood Loss

More generally than the commonly used maximum log-likelihood function, we may con-
sider the following quasi-(log)likelihood function

O P i
R(z,y ::—/ ——du, ye€)Y, zeR,
v V()

where V : R — (0,00) is a given variance function, and H is the inverse link function;
see also [51]. The canonical link function (up to an additive constant) is

t
1
t) ;= ——du, te),

where yo is an arbitrary but fixed constant. Let

) /H(Z) "
r(z) = ——du, z€eR.
Yo V(U)

Then the loss function is R(z,y) = —yg(H(2)) + r(z). In this sense, we can define the
loss function

R(z,y) = —yh(z) +r(2), (55)

and assume h and r satisfy some uniform continuity conditions. It is worth noting that
the main theorems in Section 3 and their proofs in Section D can be extended to quasi-
loglikelihood loss function with minor modifications.
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High Dimensional GLMs for Temporal Dependent Data 9
Appendix C: Real Data Analysis

In this section, we use a real dataset to illustrate the application of the Lasso procedures.
Consider the high frequency financial dataset studied by [75], which consisting of the
high-frequency trading of Walgreens stock on February 6, 2017. The data are available
from the TAQ database of the New York Stock Exchange. Let y} be the observed price
change of the ith trade during the normal trading hours between 9:30AM to 4:00PM,
Eastern Time. Due to the discreteness of y, as suggested by [75] Example 4.2, we divide
the price changes into 7 categories, namely,

(—00,-0.02), [-0.02,—0.01), [-0.01,0), 0, (0,0.01), (0.01,0.02], (0.02,00),

where the unit is one U.S. dollar. The category associated with y; is thus defined as Y.
If yf < —0.02, we have Y¥; = 1, if —0.02 < y; < —0.01, ¥; = 2, and so on. We let ¢; be
the time duration between (i — 1)th and ith transactions, which is measured in seconds.
Let s; be the normalized size of the transaction, which is the trading volume (number of
shares) of the ith trade divided by 100. We also define six dummy variables for the price
changes. Specifically, let

L ifYs=j,
’ 0 ifY; #j,

Denote z; = (2,2, ..., 2z;,7)". Then in our study, we employ the following 9d input variables,
X = {Zi—lv y;'k—h tits si—l‘l =1, 2a ) d}7

where d denotes the largest lag used in the time series. For this dataset, we want to predict
trade-by-trade price change. On February 6, 2017, there were 29275 transactions available
for the Walgreens stock. We use the first 27275 observations as the training subsample
and reserve the last 2000 observations for out-of-sample prediction for comparison.

The well known ordered probit model [32] with d = 3 is used as benchmark. Setting
d = 3, [75] compare the benchmark with several network models. In this particular
instance, a 27-10-1 (feedforward) neural network appears to perform the best among the
network models considered. The prediction results for both models are reported in Tables
5 and 6, respectively. In comparison, we apply Lasso methods with multinomial logistic
regression to the data. Besides the main effects X;, we also add two-way interactions
between y; ;,t;—;,8,—; and z;—;, | = 1,2,...,d. That is, there are a total of 27d input
variables. Note that adding two-way interactions does not improve the predictions of
the benchmark. In both standard and robust Lasso procedures, we choose d = 16. The
optimal values of tuning parameters are chosen by a two-dimensional grid search using
BIC; see also Section 2.2. The prediction results are summarized in Tables 7 and 8.

Table 5 shows that the ordered probit model does not perform well in prediction. As
a matter of fact, the model predicts no price change for all of the last 2000 transactions.
This is not surprising as the probability of no price change in the training subsample is
71.3%. The forecasting results in Table 6 show that the 27-10-1 neural network is able to
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10

correctly predict 3, 47, 1389, and 11 times for Categories 1, 3, 4, and 5, respectively. Its
misclassification rate is 27.5%. In comparison, the standard Lasso procedure for multino-
mial logistic regression correctly predicts 2, 5, 35, 1378, 20, and 3 times for Categories 1,
2,3, 4, 5, and 6, respectively. The corresponding misclassification rate is 27.85%. And the
proposed robust Lasso procedure for multinomial logistic regression correctly predicts 3,
6, 32, 1378, 20, 3 and 1 times for Categories 1 to 7, respectively. Its misclassification rate
is also 27.85%. The standard Lasso procedure and the robust Lasso procedure perform
almost the same for the misclassification rate but the latter improves the predictions in
most categories.

In some scenarios of multiclass classification, researchers assign different costs for
classifying certain classes (see [19]); for example, it may be less costly to misclassify a
benign tumor as cancerous than the opposite. In our particular example, the classes are
unbalanced and we are more interested in big price changes. To this end, we use a cost
matrix W = (wjg)] o) € R™*7, where w;x > 0 is the cost (weights) for classifying an
observation of class j as class k. We assume wj; = 0 for each j. Then, the weighted
empirical error is defined as

7
1
errw(g) = -~ Z Z Wikl{g(x:)=4,vi=k}> (57)

i<n j,k=1

where g is a classifier. We further define w;x(k # j) as the reciprocal of the proportion
of class j among all the 29275 observations, i.e.,

29275

—1
1 .
Wik = <29275 > lm—j}>  k#J (58)

i=1

Then, the weighted empirical errors for the 27-10-1 network, standard Lasso procedure
and robust Lasso procedure are 4.09, 4.11 and 3.99, respectively. Therefore, both the
standard Lasso procedure and robust Lasso procedure are compatible to the neural net-
works. From the weighted empirical error perspective, our robust Lasso procedure fares
best. This example demonstrates that the standard Lasso procedure and robust Lasso
procedure can be helpful in modeling trade-by-trade price changes in the financial market.

Table 5. Forecast tabulation for the ordered Probit model
Predicted Categories

Y, "1 2 3 i 5 6 7
2z 10 0 0 I 0 0 0
Zl2]0 0 0 100 0 0 0
@l 3|0 0 0 18 0 0 O
=] 4]0 0 0 1437 0 0 O
© l5/0 0 0 174 0 0 0
/6|0 0 0 100 0 0 O
1710 0 o 5 0 0 0
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High Dimensional GLMs for Temporal Dependent Data 11

Table 6. Forecast tabulation for a 27-10-1 feedforward neural network

Predicted Categories

Yy, 7T 2 3 Z 5 6 7
z [ 13 0 0 T 0 0 0
Zl2]0 0o 2 98 0 0 0
(3|0 0 47 129 4 0 0
5142 0 38 1339 8 0 0
© 150 0o 11 152 11 0 0
g1 6|0 0 5 9%5 0 0 O
Fl7zlo o o 5 0 0 0

Table 7. Forecast tabulation for the standard Lasso method
Predicted Categories

Yy, T 2 3 Z 5 6 7
z 112 1 0 T 0 0 0
2120 5 2 91 1 1 0
©0 30 0 3 134 11 0 0
2141 7 23 13758 20 6 2
“l5/0 1 6 146 20 1 0
g1 6|0 1 o0 94 2 3 0
Fl711 0 o 4 0 0 0

Table 8. Forecast tabulation for the robust Lasso method

Predicted Categories

Yy, 7T 2 3 I 5 6 7
z [ 13 0 0 T 0 0 0
21200 6 2 9 1 1 0
©| 3|0 0 32 141 7 0 0
2| 4|10 7 24 13718 22 5 1
“l5]/0 1 5 147 20 1 0
g1 6|0 1 o0 96 0 3 0
Fl7]11 0 o 3 0 0 1
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Appendix D: Proofs of Main Theorems

Lemma D.1. Suppose Assumption 3 holds and X\ > 2|VR,(8*)|oc. Let N = {8 € R? :
|B—B*|3 < c18\%, 3—B* € C(S)}, where C(S) is defined in (14) and ¢ > 0 is a constant.
Suppose R, (8) satisfies LRSC(C(S),N, kR, pr), where pr = cos\? for some positive
constant ¢y and kg > 0 is a constant. Then,

18— B*[3 < c2s(A/kr)?, (59)
16— 61 < eas(\kr), (60)

where ca,c3 > 0 are constants.

Remark D.1. Note that the results of Lemma D.1 can be extended to weakly sparsity
case; see [20].

P'roof Let B, = tB + (1 — t)B* We set t = 1 if |,8 B*2 < L and t = £/|ﬁ 8|2 if
|3 — B*|2 > ¢. Denote A = 3 — g* and A, = B, — 8*. By [56] and Assumption 3, when
A > 2|VR(6%)|oe, A falls in the cone C(S).

Note that A; € C(S) as t < 1, and |A;]; = |3 — B*|1 < £. By LRSC(C(S), N, kR, ¢R),
the symmetric Bregman divergence satisfies

Dr(Bi,8%) = (Bt = B*) ' (VRa(Br) = VRa(8%) = A3 — pr.

By Lemma F.2 in [22], DR(Bt, 8*) < tDR(B, B8*). The Karush-Kuhn-Tucker (KKT) con-
dition gives that VR, (8) + A = 0 for some subgradient ¢ of |3]; at 8 = S. It follows
that

kr|A3 — pr <tDR(B,8%) = Al (VRu(B) — VR.(87)) < A (VR (8) — X()
< 1BAAL < 6M(A)s| < 6AVs|(Ay) sl < 6Mvs|Ay .

Hence, given pr = cjsA\?/kr,
|Alz < C1vs(MkR).

If choose £ > C1y/s(\/kr), then A, = A. Tt follows that |3 — 8*|2 < C2s(\/kg)2.
Moreover,over the cone C(S),

13— B 1 < 48— B")sh <4vs|6— B2 < Crs(MER).

O
Lemma D.2. Assume |f*|1 < L < oo, |r'(z)] < My < oo and | ()] < Mz < o0
Jor any x € R. Also assume ||| X |oo|ly,ax < 00, [|Y[|g,ay < 00, where v > 16/7,q > 2,
ax >21/2-8/v, ay >1/2—-1/y—=1/q. Let 1/x =1/v+1/q < 1/2, an = min{ax,ay}
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High Dimensional GLMs for Temporal Dependent Data 13

and ag = ax /7 — 1. It holds that, in an event with probability at most Ci(logp)~X +

Cg(logp)—77/8 +p—03
> Cyap, logp + CSCLpf(k)%p)?)/Q + C6ap’:i(10gp)3/2a
P, n nl-1/q4-1/~ 1—8/(77)

n

L (T,
i=1

oo

(61)
where Cy,Co,C3,Cy,Cs,Cg > 0 are constants, C3 and C5 only depend on L, and

v, x

+ 12X Jso 150 max [| X jlly.ax +max [ X jlly.a.,

ap2 = [1X Joolly.01 Y llg,01

ap3 = [1X Joo 1 ax N1 X Jsollvax + 11X lolly,az-

Proof. As E(Y;|X;) =7'(X,' 5%),

1 — 1 — 1 —

2 (X < =N VX, —EY. X; =S (xS X - B (X

n; Y (X B X < n; n;r %) (X 57X
=T+ 1L

We bound the above two terms one by one.
We first consider I. Let 1/x = 1/v + 1/q. By Holder’s inequality, we have for m > 0
that

]38

[ mex | XY — Xi5, 100 Y 1oy |l

T
3

NE

(| max [ X5 (Y — Y co1)lllx + | max |(Xi; — ij,{O})Yz,{o}Hx)

T
3

My T

<| m]aX|le|||'y||Yl =Y qoyllq + |l m]%lX|X1j - le,{0}|||'y||Yl,{O}||Q) -
l

Il
3

Since a1 = min(ax, @y ), the dependence adjusted norm satisfies for y

Qg

| max < [l max X jflly.01¥llg.on + [l max | X jflly.c0 1Y-]lg,

Similarly, we can obtain

XY Ix.00 < 11X 5.0

Y.Hq,m + HX-ij,oq ”Y-Hq,o < 2||X.||'y,a1||y-||q,oc1-

Let ax >21/2—-8/y and ay > 1/2—1/y—1/q. Then a; = min{ax,ay} >1/2—-1/x.
Applying Theorem A.1, we have

log p _
122 s | o Y. s + 07577 05 221X L s [Vl (62
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in an event with probability at least 1 — C;(logp)™X — p~=.

Next, we consider II. Let 1/¢ = 1/y+1/K, where K > ~ will be specified later. Again,
by Holder’s inequality, we have for m > 0 that,
Do max [ (X7 B%) Xij — 1 (X 110y 87) X oyl

i=m

<Z(||max T8 = Oy 8Kl mie (X >[Xij—xij,{o}]|||¢)

<ZM1HH1aX|X Xiqoyllle + Z I (X" B) = ' (X 0y B° )l [[max | X5

Let Ro = L/(2M1). As 3772 1Xi — Xi f0yloclly = O((m + 1)~ )
Z I (X" 8%) = (X 0y B9l < [ min{2My, LI X, — X; oy ]oo
= , PN
<2M; Y (Emin{l, Ro|X; — X; (0}]0c }7)

(oo}
<2M; Y (Emin{l, RolX; — Xi,{o}‘oo}’y)l/K

i=m

<2MZ TW/K
=m

Thus, we need axy/K > 1. By setting K = 77, we have 1/¢ = 8/(7v) < 1/2 and
ag=axy/K—-1=ax/7T—1>1/2-8/(7y) =1/2—1/¢ > 0. Meanwhile,

o0
X 1/7
S (XTBY) — 1 (X108 x < 2Mi Ry "X Lol Y2
It follows that
||maX|7“ (XTB)X jlllg.00 = Sup(m+ 1)e Z | mEM<|7“ (X B) X5 — ' (X 0y B5) X oyl

i=m

1/7
< My max | X 6,00 + 2M1 Ry X oo |1 2/2 sl max | X1l
< My max X 5l g,y + (2M2)*TLVT X o [T, || ma | X [

As g > 1/2 —1/¢, Theorem A.1 implies that

logp
i z\/i <L1/7|X ool I3/ a1 + max IIX.jIIW)

+ 0T (0 p)2 (LTI ol YT X by + N1 X o llyaz)  (63)
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High Dimensional GLMs for Temporal Dependent Data 15

in an event with probability at least 1 — C3(logp)~77/8 — p=C1,

Then Lemma D.2 follows from (62) and (63). O

Proof of Lemma 3.1. We first prove the RSC of R, (8) at 8 = 8* over the cone C(S)
C(S)={A eRP:|Agc|; <3|Ag|1},

for S € {1,2,...,p} and |S|o = s. Let v = /2, K =7y = 7v/2, 1/¢' = 1/ +1/K
and ap = axy'/K -1 = ax/7—-1> 1/2-8/(7y) > 1/2 —1/¢' > 0. Similarly
to the proof of Lemma D.2, we can show that in an event with probability at least

1= ci(logp)~7/107) —p=ez,
lo
< %%,4\/? + caay 5t T (log p)*/2,

where ¢y, ¢, c3,¢4 > 0 and c3, ¢4 only depend on L.
Next, we bound the difference of n =1 Y0 | ATr"(X,T ) X; X" Aand n=2 300 AT (X8 X; X,TA
to control LRSC within a neighborhood of g*. Basic calculation shows that

1 n
= (XXX B (X B0 XXT
n

i=1

oo

1 & 1 &
’ STATY(XTBX XA - =S AT(X] )X XA
n

i=1 i=1

ST ) - f<XJ@*>]ATXim|

=1

S|

< max |7"”(XiTﬁ) — r"(XiTﬁ*)| . %Z(XZTA)Z. (64)

i=1

/1
Ao = C3ap.4 % + C4ap,5n16/(7v)_1(IOgP)3/2~

As sup),|,— E|X, V|7 < ¢o and A € C(S), we can show that in an event with probability
at least 1 — ¢; (log p)~7/(167) — p=ec2,

Let

1 n
SN TAP < ol AR+ o - AR < ol AR+ 5o [A3 < 260l AR.

i=1
By Markov inequality, setting z =< n?/7, for any |v|y = 1

EIX, v

—— <cn . (65)

P(max |X,'v| > 2) <n-
As |8 — B*|3 < C18\2, over the cone C(S),

max |r”(X;" B) — (X, B%)| < M3c'|B — B |an*/7 < Mac/n®/7\/sA,
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Hence, we have, for any 8 € N,
1 n
LSS ATYXT XX Azl A~ MolAR ~ 2 AR > (sn/DIAB. (66)

O

Proof of Theorem 3.1. Theorem 3.1 follows from Lemma D.2, Lemma 3.1 and Lemma,
D.1. O

Proof of Proposition 3.1. The proof of Proposition 3.1 is similar to that of Theorem
3.1, and thus is omitted. Specifically, we need to replace the concentration inequality
Theorem A.1 by Fuk-Nagaev inequality in Lemma D.2 of [17]. As we do not need to
use the condition |$*|; < L to derive functional dependence measure, the proof can be
simplified. O

Lemma D.3. Assume |8*]1 < L < oo, |r'(z)] < M1 < oo and |r"(z)| < My < oo for
any x € R. Also assume maxi<j<p || X j|ly, < 00, ||Y.|ly, < 0o, where ¢t,v > 0.
(i). It holds that, in an event with probability at most p~1

N (logp) /2 (logp)!/2+2
- —(x] | >c Xl 1Y 22—y X2,
2 22 0 TN > Comp Xl ¥ o, B 2 m |, B,
= oo
(67)

where Cy,Co > 0 are constants, and C3 > 0 only depends on L.

(i1). Assume the process X; andY; also satisfy geometric moment contraction || X j|l4,amc <
oo for some constant 0 < p; < 1, ||Y||s,amc < oo for some constant 0 < p, < 1, and
p=min{p;,p,} € (0,1). Then, in an event with probability at most p~1,

logp  Co(logp +logn)' ™  Cr(logp +logn) ™
n n

z{: 4’7’ )(773 )) i

i=1

> C%pr

(oo}

)

S|

(68)
where Cy, Cs, Cg, C7 > 0 are constants, and

by,

Proof. As E(Y;|X;) =7'(X,' 5%),

an (X 5%)) X

1=1

3 | =

1 n
< =NV X, —EV;X;

=141I.

%Zr' X, 89X, —Er' (X 8" X,
=1

o0
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High Dimensional GLMs for Temporal Dependent Data 17

We first consider the case (i). Let v = ¢(1 4+ ¢/v) and g = ¢(1 + v/¢). Then

D IXuY = X0y Vigoylls < (IX5 1417 = Yigoylg + 11X05 — Xij.403 412,403 1lg)
=0 =0

< 2A0mjA0,q,y-

By the definition of v and ¢, we have
QAOWJAO@?J
¢L+IJ ¢L+l/

where ¢ = (14+¢/v)*(1+v/t)”. Then, applying Theorem A.2(ii) with o = 2/(1+2v + 2:),
we have, in an event with probability at least 1 — p~°,

XY Ny, < sup < 20Xl YNy Sup = 2¢[| X jll, (1Y, »

1< (log p) /2 v+
- > VX, -EYVX;| S——"—— X . Vi, . 69
n ; ~ NG m]?*x” lle Y A, (69)
For II,
o0
i=0
< IP(XS B — Xyl + Z Il (X" B%) = 7' (X 0y B Xij g0y 1o

I
<

2

<M1 Ao, +Z||?" (X3 B%) = (X 0y ) 12611 X510 Il 26
=0

L)

<Mi1Ag g, + ML mgxz | Xix — Xik, 103126 [ Xij |20
© =0

SMlAO,d),j + MsL m]?X A072¢’kA072¢7j.

It follows that

MiAo,g.; + MaLmaxy Ao 2¢ 1 00,24,5
¢2L

17" (X B%) X jllg, < sup
622

< M|

v, + Mo

Again, Theorem A.2(ii) implies that, in an event with probability at least 1 — p~¢2,

1 1/2420
n-

max || X ;|2 . 70
S O ma Xl (o)

i=1 0o

Part (i) is completed by (69) and (70).
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Next, we shall prove (ii). Let 1/¢9 = ¢ + v. Elementary calculation shows that

P(|X;;Y;] > 2) <P (|Xi5] > 2%°) + P (|Y;] > 2%°7) < egexp (—caz®) + c5 exp (—cez?)

< crexp (7081‘1’0) .

By Holder’s inequality, for p = min{p;, p, },

P Y NYiXis = Yi 0y Xij oy |12

i=m
<p™ ™ Yillall Xij — Xijqoplla+ 7™ D IYi = Vi oy llall Xi oyl

<|IX ]

s,amc|Yilla + (| X |4l Y. [l4,amc-
It follows that
1Y X jll2.amc < 2[|X j[la,amellY.[la,.amc-

Let 1/¢1 = 14+1/¢¢ = 1+t+v. Applying Theorem A.4 with z < y/nlog pmax; [|[Y X ;
(log p 4+ logn)*/?1, we have, in an event with probability at most p—¢,

2,GMC+

1 — lo c11(logp + log n)1Hetv
max |~ > Xi;V; = EX;;Y;| > exo max || X jla.amclY.[la.amoy/ Ly (logp + logn) :
i |n & J n n

Similarly, we can show

7' (X T B*) X jll2,cme < ML max || X k[la,amel| X

la,amc + M| X jl2,amc < oo.

As |r'(XTB*)| < My, Theorem A.4 implies that, in an event with probability at most

P2,
lo c14(logp + log n)1t
> ersLmas X513 o oL + 240ELH BN T

> (XTI AN)X - B (X8 X

i=1

S|

(o]

Then, part (ii) is also proved.
O

Proof of Lemma 3.2. (i). Similarly to the proof of part (i) in Lemma D.3, we can show
that in an event with probability at least 1 — p™¢,
(log p)'/2+3

1 & " T g% T " T % T
=S (XXX - B (X B XX, .
’n r ( K3 /8 ) K3 r ( (2 /B ) \/ﬁ

=1

< exLmax || X ][5,
J

o0
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High Dimensional GLMs for Temporal Dependent Data 19
where c1, ¢z > 0. In addition, as sup,>q supj,|,— Y X vy < eo, for any (0] = 1,
P(max | X, 0] > cx) < ¢/nexp (—c’xl/b> :
7

Setting = =< (logn)*, we have

P(max | X, 0] > c(logn)') < n=c.

As |8 — B*|3 < C18A?, over the cone C(S), in an event with probability at least 1 —n=¢3

max |r” (X, B) — (X, B*)| < Msc(logn)'|8 — B*|2 < Msc(logn)“v/sA.

Then, employing the same arguments in the proof of Lemma 3.1, we can establish LRSC.
(ii). Similarly to the proof of part (ii) in Lemma D.3, we can show that in an event
with probability at least 1 —p™“,

> (T B XX] — B (X[ 8 XX

i=1

S|

oo

flogp  cs(logp + logn)t T2
SCzLH?Xuxduchc n + " )

where c1, cg, c3 > 0. Then, adopting the same procedures in the proof of Lemma 3.1, we
can establish LRSC.
O

Proof of Theorem 3.2. Theorem 3.2 follows from Lemma D.3, Lemma 3.2 and Lemma
D.1. O

Proof of Proposition 3.2. The proof of Proposition 3.2 is also similar to that of The-
orem 3.2(ii), and thus is omitted. Specifically, we need to replace Theorem A.2 by the
concentration inequality in (1.4) of [53], which concerns exponential inequality for inde-
pendent random variables. As we do not need to use the condition |8*|; < L to derive
functional dependence measure, the proof can be much simplified. O

Proof of Corollary 3.1. We only prove the case under the conditions of Theorem 3.1,
and proofs of the other two cases are similar. The specific technique was developed by
[46]. The following proof is similar to that of Corollary 3 in [46]. Let Q := fol V2R, (B* +

t(B — B))dt, R(B) = ER,(B) and V>R(B) = EH,(8). By the fundamental theorem of

calculus for vector-valued functions, @ (8 — 8*) = VR, (8) — VR, (8%).

By Theorem 3.1, in an event ) with probability at most 1—C1 (log p) "X—C5(log p)
-1 —C3
—-Pp ’

—7v/16

n

1B — B*|2 < VA
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Note that

1y .
Q-v R = [+ > (7 (%7 (8 + 18- 8)) = "(x]8)) XiX[ at.
For each pair v,w € RP, we have

% Z (X7 (8- 8) (XT0)(X]w)

o (- v Ru() w] <

Employing similar arguments in the proof of Lemma 3.1, we can show, in the event 2,
Hst - Van(ﬂ*)ssH2 SURVON
V2R (8")ss — V'R(B")ss |, S s
If follows that
HQSS - V2R(ﬁ*)SSH2 < n27 A + sA.

By the matrix inequality that |A=1 — B71|y < [|A7Y3]|A - Bll2/[1 = [|A7Y||2]|A — B|2],
we have

<A+ s (71)
2

H (st) T (V*R(8")ss) -

A similar argument shows that in the event €2,

max

T(A 2 * 2
max e (QSCS = V'Ru(B )SCS)L SUERNVON

nax le] (VPRu(B%)ses — VPR(B")ses)], S VsA.

J

Then, in the event €,

max
jese

e] (Qses = VAR(3)ses) || S n? (72)
Let

<I411

o

Qses (QSS) - VRA(B%)s

where

L= |V2R(3)ses (VPR(8)ss) " VRA(8)s|

o

1= [{Qses (Qss) ' = VPR(B)ses (VR(F)ss) '} IRA(5)5

oo

imsart-bj ver. 2014/10/16 file: output.tex date: November 28, 2021



High Dimensional GLMs for Temporal Dependent Data 21

By Lemma D.2, in the event (2,

n

VR, (B (X B))Xi| <A (73)

1
2

1
n

1:1 oo

By the incoherence condition, it follows that I < A. Turning to II, we have,

II < max
jeSs

2 {Q5c (@ss) "~ VPR()ses (V2R(5*)Ss)_1}

) IVRA(B)sls -

Elementary calculation shows that
max

Negs | {QScs (st)il — V*R(8%)ses (VQR(ﬁ*)ss)l}

<|ef VPR(B*)ses Ay

2

|, + |e] Ao (VQR(ﬁ*)ss)AL + lef Aoy,

where
A -1 2 * -1 A 2 *
Ay = (st) — (V*R(B")ss) ", and Ay = (QSCS ~V2R(B )SCS).
By (71) and (72), in the event 2, we have
IT < (n?7/sA 4 sA)V/sA.

In addition,

Then, by (73), the incoherence condition and Proposition 2 in [46], strict dual feasibility
holds under the scaling condition n?/7s\ 4+ s3/2X < 1. We are able to apply Theorem 1
and Theorem 2 in [46].

Turning to £, error bounds, we have in the event 2,

Qses (Qss) = VPR(E)ses (VPR(E)s5) || S (VoA + s\,

oo

-1

18— B*|o < ‘(st>_l VRn(B")s

+A H (@ss)

e}
-1

< V3]l IVRA(8)sl + | (TR(8)s55) ™ TRa(8)s| _+A]|(V2R(8")ss) |

o0

-1

A ’(st)l — (V*R(6")ss)
< (217 J5A + s\) fA+H (V2R(8")s S)*IHOOA

<[ Rrense ™ A

using the scaling condition. This implies the desired result by Theorem 2 in [46].
O
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Lemma D.4. Assume |8*]1 < L < oo, |r'(z)] < M1 < o0 and |r"(z)| < My < oo for
any © € R. Also assume]E|X | < C < oo, for any 1 < j < p, and E|Y;|* < C < co. Let
1X jlla,aMmc < oo for some constant 0<p; <1, |Y
py <1, [|Y]ly, < oo andp=min{p;,p,} € (0, 1). Choose T =< n'/%(log p)~'/*(logn)~1/2.
As long as (logn)?*'(logp/n)*/? < C4, it holds that

( > Cy(logn)/ —loip ) <n~Cyp=C (74)

where C1,C3 > 0 depend on ||Y. ||y, , Ca2,Cs > 0 depend on L, p, max; | X j||s,amc and

n

Z '—’f’ XTﬁ)) i

o0

Proof. Note that

1 « 1l = < 1, = - . >
= — (X, <=M VX, - EY;X; it "XTBX; —Er (X BY)X;
w2 (i TEE] <|03 + |y 2T - B (X 9)
n ‘]EYJQ _ Er’(f(jﬂ*)f(i’
=1+ 11+ IIL

We bound the above three terms one by one.
We first bound I. Let V; = sgn(Y;)(|Yi| A1), with 71 < 7 < n'/4(log p)~'/*(logn) /2.
Then

%im@j—Em@j:( ZYX” EY:X,;) +E[(Y: - Y) Xy
i=1

R0

3 \hﬂ

=I1+12+13-

For I, by Hélder’s inequality, for p = min{p;, p, },
P Y YKy = Y03 X oy 2

<p™™ > IVillall Xi — Xijgoplla+p7™ D IY: = Vi oy 1l X oy Il

i=m

ijlla

The last inequality follows from the property that the function sgn(x)(|z| A m) = (z A
71) V (—71) is Lipschitz continuous and bounded. It follows that

1Y X jll2.amc < 2[|X j[la,amellY. [la,amc-
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Applying Theorem A.3 with z =< y/nlogp(logn)? and as |)Z'”171| < 7117, we have

(max Z )~( 57& >

22
< 2pexp (— == 5 5 )
CollX5Y112,ame + Co(ni7)? + Cp(i7)(log n)?x

nlogp(log n)2>

<p
for some ¢y,
1 _p_027
~ = 1 2]
max n 12)(1] —EX,;;Y;| < (cwgn)iogp.
=1 n
For I, we have
~ = - E| X, Y2 C
E[(Y; = Yi) Xij] < E|XiYilgy,smyl < % <.
1

For I3 with any 1 < j < p,

P(I3 #0) <P (U{|Y;| > n}) Z (Y| > 1)

=1

As |Y||y, < o0, for any = > 0,
P(Y;] > z) < e3 exp(—cgz/?).
If < (logn)” < 71 =< n'/*(logp)~/*(logn)~/2, we have
P(I3 #0) <n~ .

Next, we consider II. Similarly to Iy, setting p = min{p;, p,}, we can show

o]
p " Z I (X" B%) X5 = ' (X, 10y 87) Xij 10 12

p~" Z Il (X7 8%) =/ (X, oy BN X sl + o7 Z I (X101 8°)(Xij — Xij gop)ll2
co P 0o
<p Y M| Bl Xk — X oy lall Xijlla + o™ D> M| X5 — Xij oyl
1=m k=1 i=m

p
< M| Bl IIX kllemel| Xijlla + M| X jll2.ane
k=1

<M, L max 1 X klla,emel| X jlla,ame + M| X jl2,ame-
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Hence,

I (XT8*)X jll2.amc < Mo X jll2,cme < oo

Applying Theorem A.3 again with x < /nlog p(logn)? and |r’()?i—rﬁ*))?ij| < Mj7, with

probability at least 1 — p~°7, we have
log p
< co(logn) ;
n

where cg, c7 > 0 depend on My, My, L, p and ||r’()Z'_Tﬂ*)X_j||2,GMC.
Finally, we bound III. As E(Y;|X;) = (X, 8*), for any 1 < j < p,

1
n

Z’I’/ XTﬁ 2]' — ET’()};B*)X”
i=1

‘EY;X” — ET/(XJ—ﬂ*)XU

—E|0(x7 ) (K] B X

P
<> M| BEIE|(Xa, — Xi) X ]

=1

=

k
< D M| BE|E[X o Xin (x4 57y |
k=1

p ~
<> My|BEIX G X5/

k=1
< M,LC7!

Combining Iy, I5, I3, IT and III, we have the desired results. O

Remark D.2. If |Y;| < C < oo, for example Y; is a categorical variable, then the
condition (logn)?**1(logp/n)'/? < Oy can be removed.

Proof of Lemma 3.3. We first prove the RSC of R, (8) at 8 = 8* over the cone C(S)
( ) {AERP |ASC|1 <3|AS| }

for S € {1,2,...,p} and |S|o = s. Note that

1 & ~ S <
= AT(X] XX A
n
i=1
=AT (B (X B)X X ) A+ AT (127’" (Xi ) XX - Er”(ﬁﬂ*)iﬁ) A
n
=1

+AT (]Er”(f(j BIX X — B (X B X X[ ) A. (75)

?

imsart-bj ver. 2014/10/16 file: output.tex date: November 28, 2021



High Dimensional GLMs for Temporal Dependent Data 25

For the third term in (75), we can show for any 1 < j, k < p,

ET//()?JIB*)Xinik — ET//(Xi—rﬂ*)Xinik

S ‘E (T//(X;rﬁ*) — ET‘N(XZTﬁ*)) )?Z])N(m —|— ‘Er”(XiTﬁ*)()?ij)}ik — XZJsz)

E|(Xq — )zil))?ij)?iﬂ + M2E|)?ij)}ik — X Xk

Mﬁ

=1
p
<D Ma|B7 | BIXa Xy XawLgix, | + MaBIXi; X (Lx, 1571 + Lixi>n)]
=1
P 2y Y 2 X. 2
E|X5X;,X; E|X7 X, E|X;; X;
§2M3|ﬂl*‘ | il k|+M2 | J k|+M2 | J zk'
= T T T
2C'M2 +CMsL

T

As for the second term in (75), we shall bound the |7 (X T 3*)X ; X x|l2.cmc. By Holder’s
inequality, for p = min;{p;},

p " Z 1" (X, B7) X3 Xiw — 1" (X 10y B7) X i, 10y Xin (0} |2

- Z " (X B87) = (X[ 10y B X i Xinlla + p~™ Z 1" (X 0y B)Xi; Xt — Xij 101 Xi 0] 12

i=m

o0
- Z I (X 8%) = 1" (X 10y B 6 Xij Xills + Ma - p7™ > |1 X35 X — Xij g0y Xin {0y |l2

o P o)
<P YD Ml |1 X — Xagoylle Xy Xiwlls + Mz - p~™ Y7 11Xy — X oy |l Xl
i=m [=1 i=m
+ My p™ > 1 X5 g0y lall Xin — X oy |14

<M Lmax || Xllo,anmel| Xijllo | Xiklle + M2 X jlla,amel| Xiklla + Mz Xijllal| Xk [la,.amc-

It follows that

||7"”()?.Tﬁ*))}.j)~(.k||2,@1\/{c
<Ms Lmax || X il|s,amcl| Xij o [ Xiklle + M2

Applying Theorem A.3 with z < y/nlogp(logn)?, as |r"()~(;6*))~(ij)~(ik| < My7? and
7= n'/*(log p)~'/*(logn)~1/2, we have with probability at least 1 — p~©

< co(logn)y ] 282 ip (76)
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where ¢1, c2 depend on p and ||r”()2"—rﬂ*))~(,j)?_k||2’GMC. Hence, employing (76) and the
upper bound of ‘Er”()};r,é’*))?ijf(ik - Er”(XiTB*)Xinik‘ into (75), we have, in an event
with probability at least 1 — p

! ZAT "X B)Xi XA > ku|AlZ - es(logn)
n

=1

logp

Al (77)

where c¢1,c3 > 0 depend on p, My, M3, L and max; ||X ||, aMe-
Next, we bound the difference of n=1 31" | AT (X7 8)X; XA and n~iST AT (X B9)X XA
to control LRSC within a neighborhood of B Basic calculatlon shows that

n

’ 1 STAT(XTB) XX A - 1 ZATr”(f(z—Tﬁ*))@XJA
n

=1 =1
1 — ~ ST s S o
== (X, B) — (X, B )]ATXiXiTA|
i=1
~ ~ 1 < ~
< " XT -/ XT *\| . = XTA 2.
< max |r"(X; B) — (X 57) n;(z ) (78)
By the decomposition
n
1 Z(f(}Af = AT(EXX)A+AT(EXX, ~EX, X )A+AT( 1 Z ~EX;X;)A,
n “ n

as sup|,|,—1 E|X, v|? < ¢y and A € C(S), similarly to the proof of (75), we can obtain
with probability at least 1 — p

1, = 1
=Y (XA < ol A+ logny | =2E - |A < col A} + ¢'slogn
n n
=1

log p 2
SE A
- A3

< 2CO‘A‘§
Meanwhile, as |8 — 3*|2 < C1s)\2, over the cone C(S),
(X, B) — (X BY)| < MaT|B — B*|1 < M- 4|Bs — Bily < AM3TsA.

max |r
2

Hence, it follows from (78) that
1ZAT //(XTﬂ) XTA_EZATT”()’EZTﬂ*)XZXZTA
n
i=1 i=1
<8co MssVAA[F < (vm/3)| A3 (79)
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Combining (77) and (79), we conclude that

1 & o~ o~ 1
=Y ATY(XTHXXTA > k| A — (ru/3)| A - cos(logn)y | ZoL|Af3
i=1

> (ku/2)|AJ3.
O

Proof of Theorem 3.3. Theorem 3.3 follows from Lemma D.4, Lemma 3.3 and Lemma,
D.1. O

Proof of Corollary 3.3. The proof is similar to Corollary 3.1. Thus it is omitted. [J

Lemma D.5. Assume |3*[; < L < oo. Also assume E|X};| < C < oo, for any 1 <
Jj < p, and ElY;|* < C < oo. Let | X jlla,amc < 0o for some constant 0 < p; < 1,

IY |ls,amc < oo for some constant 0 < p, < 1, and p = min{p;, p,} € (0,1). Choose
1,79 < n'/4(logp) /4 (logn)~1/2. It holds that

P ( > Cy(logn)y/ loi;p> < p_C27 (80)

where C,Cy > 0 only depend on L, p, max; || X ;|

Iem o~ =~
= XY - X[
n

=1

o0

s,emc and Y |l4,eme-

Proof. Note that

1~ ~ =~ 1~ ~ ~ ~ 1~ ~ ~ ~
NX7-XT89 <|=Y X,V - EXY; XX —EX X B
n; ( zﬂ)m_n; m+n; B zﬂm
+ |[EXY: - EX.Y| +[EXY: -EX.X] B
=14 11+ I 4 1IV.

We bound the four terms one by one. For I, by Holder’s inequality,
X4 Y: — Xij (01 Yiqoyll2 < [1Xs5 — Xij oy 4l Ya oy lla + [ X511allY: = Vi g0y [la-
It follows that, for p = min{p;, p,},
b ~ ~ ~ ~
P Y XY = Xij 0 Ya oy ll2
i=m

<p ™Y X — Xijqopllal Yoy la+ 07 D 1K 14l1Y; = Y goy lla

i=m

<X lla,emelYilla + (1 X 14l Y|l 4,cmc-
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That is, ||)?.j?‘|2,GMC < 2||X jlla,amcllY |la,amc. Applying Theorem A.3 with = =<
nlogp(logn)? and |X;;Y;| < 172, we have

P (max

for some C > 2.
For II, we can obtain

I~ o o ~
- Z Xii Xiw — EXij Xn
n

i=1

> XY - EX;Y;

=1

2
>x | <2pexp = x
C||X.jY‘|%7GMC + C(m172)? + C(m172)(log n)2x
<p_o1

— )

181 < L max

II < max
1<5,k<p

1<j,k<p

! z CEX, X

with z =< nlogp(log n) and \XUXM < 72, we have

P max
1<5,k<p

Next, we bound III. For any 1 < j <p,

Z X'Lszk - EXZ]sz

>x | <p- Cz,
n

EX;Y; — EX;;Y; = BYi(X;; — Xyi) + E(Y; — V)X
S EYiXijlyx,2ny |+ EIYiXily, 2]
EY: X5 E|Y2X,|
< +
Ty Ty
<Cry'<Cony?

Finally, we bound IV. For any 1 < j < p,

P
EX;;Y; - EX;; X, 8" = EX;; X, 8" — EX;; X, 8" = |BAIEIXi; Xix — X Xinl

=1
p ~ ~ ~
Z |BRIE(|(Xij — Xij) Xir| + 1 X5 (Xir. — X))
=1
p
Z BB X Xiel (11 x,, 1373 + 11 Xin|>7})
=1
P

< IBE(BIXE Xkl 72 + EI Xy X | /72)
k=1

< CL72 < CLT{Q.

The the desired results follows from the upper bounds of I,1I,III and IV. O
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Proof of Lemma 4.1. Note that
1 e~ ~ 1 e~ ~ ~ ~ ~ ~
SN XX = (DY XA -EXX]) + (BEXX] -EXX] ) +EXX].
n n
i—=1 i=1

We can decompose n~! ZZL:I ﬁT)?i)N(iTﬁ into three terms. For the first term, similarly
to the proof of II in Lemma D.5, with z < y/nlogp(logn)? and | X;; X;x| < 75, we can

show,
1
> c1(logn)y/ ng) <p .
n

E|Xi Xk — Xij Xir| < E[Xi; Xin|(Lx,515m) + L{Xik[2m))
< (BIX] Xikl/72 + E|Xi; X5 /72)
< C’T{1 < CT{z.

1
n

Z X Xiw — EXij Xn
i=1

P max
1<5,k<p

For the second term,

Therefore, we have for any € RP, with probability at least 1 — p~¢2,

1 — ~ ~ lo
=Y BT B2 BTEXXT)E — eallogn)y |2 8]
i=1

O

Proof of Theorem 4.1. Employing the same arguments as those in the proof of The-
orem 2 in [23], Theorem 4.1 then follows from Lemma D.5 and Lemma 4.1. O

Proof of Corollary 3.3. The proof is similar to Corollary 3.1 in the paper and Corol-

lary 1 in [46], and thus is omitted. Note that in linear regression, the hessian matrix does
not depends on (3, which will simplify the proof. O
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