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Abstract
Geopolitical events exert profound influence on global affairs, shaping the political and economical courses of nations

and societies. Understanding these events and being able to accurately predict any future events are critical for effective
policy-making, risk assessment, and strategic planning. This paper uses a dynamic factor model for matrix-valued time
series as the main prediction model. The outcomes of the main model are further combined with the predictions from
several simpler models, and it effectively produces high prediction accuracy for highly heterogeneous count data. The paper
leverages the Global Database of Events, Language, and Tone (GDELT) dataset that contains records of events found
in broadcast, print, and web news sources around the world. The data consists of weekly frequencies of 20 (aggregrated)
types of events from 260 countries and regions, for 215 weeks. Notably, the proposed model and its prediction averaging
approach achieved the best performance among all participating methods in the 2022 ATD program challenge sponsored
by NSF on the same data set.

1. INTRODUCTION

The research presented here is motivated by the data
challenge held by the Algorithm for Threat Detection (ATD)
program, sponsored by the National Science Foundation
(NSF) that took place in 2022. The aim of the competi-
tion is to develop a forecaster for predicting national-level
geopolitical event counts given historical data. We devel-
oped a meta predictive inference procedure, using a dy-
namic factor model for matrix-valued time series as the main
model assisted with model averaging techniques. Our devel-
opment is effective for highly heterogeneous count data, and
it achieved the best performance on predicting new events
in holdout testing data among all participating methods in
the competition.

In the realm of political science and international rela-
tions, the integration of advanced computational techniques
has revolutionized the analysis of global event data. The
Global Database of Events, Language, and Tone (GDELT)
stands as a comprehensive repository, encompassing diverse
sources that provide a holistic view of international events
and their associated metadata. Researchers have increas-
ingly relied on GDELT as a pivotal resource for compre-
hending global political, social, and economic phenomena
[5]. For instance, in their work, Galla and Burke (2018)
leverages machine learning models to predict social unrest
using GDELT data [4]. Their analysis highlights the impor-
tance of news articles’ negative sentiment in predicting ma-
jor civil unrest events. By examining news articles captured
by GDELT, the study identifies social factors and events
that precede large-scale unrest at both state and county

levels. Similarly, [5] demonstrates how GDELT data can be
used to track and forecast political instability across differ-
ent regions of the world. Their work shows the potential of
GDELT data for providing real-time insights into global po-
litical dynamics In addition to conflict prediction, GDELT
data has been employed to understand political communica-
tion and media influence. [1] explores how media attention
and public interest, similar to data captured by GDELT,
influence financial markets. By examining the correlation
between media coverage and stock market movements, they
highlight the impact of global news on economic activities.

The GDELT data used in the competition contains
weekly counts of 20 types of events from 260 countries and
regions. For each week, the observations are naturally rep-
resented by a 260 × 20 matrix. The dataset is thus a times
series of matrices. The recent development of matrix time
series models [3, 8, 7] provides a valuable tool for model-
ing intricate interactions within each component of the time
series. These models extend traditional univariate and vec-
tor time series approaches, enabling the capture of evolving
dependencies between multiple variables over time.

There are two major approaches of modeling matrix and
tensor time series. Employing a multi-linear autoregressive
structure, one can effectively represent and analyze the tem-
poral dynamics inherent in the matrix time series with fore-
casting capability [3]. On the other hand, matrix and ten-
sor factor models offer a potent framework for dimension
reduction and the extraction of latent variables from high-
dimensional data, though it lacks the forecasting capabil-
ity [8, 7]. The dynamic matrix factor model [9] combines
the advantages of both approaches by employing the factor
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model to reduce the dimension, and specifying the autore-
gressive structure of the factor process to allow for predic-
tions. Within the domain of time series analysis, dynamic
factor models thus facilitate the discernment of underlying
structures governing both cross-sectional and temporal pat-
terns. The aforementioned models have found success in a
spectrum of fields, including finance, economics, transporta-
tion and others. They are especially suited to account for
the unique characteristics of multi-dimensional datasets like
GDELT.

We explore the use of matrix time series models and
model-averaging techniques in constructing a predictive
model for the complex GDELT dataset in the competition.

1.1 The Dataset

The dataset under consideration is the GDELT (Global
Dataset of Events, Language, and Tone) dataset, a public
database that contains data on geopolitical events around
the globe. It uses the CAMEO coding system to record the
geopolitical events on where the they took place, the actors,
sources and the types of events are recorded. The data used
in this project is at a national level, and contains weekly
aggregated event frequencies, based on event records found
in broadcast, print, and web news sources around the world.
There are 20 event codes/types (”protests”, ”threats”, ”pro-
viding aid”, ”engaging in diplomatic cooperation”, ”as-
saults”, etc) and 260 country/regions. The dataset spans
from 2014 to 2018 with total 215 weekly observations.
Specifically, a matrix of counts is observed every week: each
row of the matrix corresponding to a country/region and
each column an event type.

A major challenge of analyzing the GDELT data is the
heterogeneity that exists among and within countries and
events. The data exhibits a large and diverse variation not
only within individual countries but also when comparing
different countries to each other. The variability in the data
is extensive and makes it a particularly challenging dataset
to analyze and work with. Figures 1 and 2 are two snapshots
of the data, showing the vast disparities within/between the
countries with the highest frequencies, and those with the
least frequencies.

The goal of the 2022 ATD Data Challenge is to create a
multivariate forecaster capable of predicting national-level
geopolitical event counts. Given past historical event counts,
the goal is to predict the number of each region-event (i.e.
every cell of the matrix) for the next k weeks. The host of
the competition split the data into a training dataset (215
weekly data points) which was made available at the start
to be used to develop and investigate the appropriate mod-
els, and a holdout dataset which was used to independently
evaluate the performance of the forecasters.

1The events are: 1. Make Public Statement, 2. Appeal, 3. Express In-
tent to Cooperate, 4. Consult, 5. Engage in Diplomatic Cooperation,
6. Engage in Material Cooperation, 7. Provide Aid, 8. Yield, 9. In-
vestigate, 10. Demand, 11. Disapprove, 12. Reject, 13. Threaten, 14.

Figure 1: Time series plots of the 20 events1for US and UK,
two countries with high event frequencies.

Figure 2: Plots of 20 events for British Indian Ocean Ter-
ritory (IO) and East Timor (TP), two countries with low
event frequencies.
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Table 1. Illustration of Data in a matrix form

Event AA AC AE AF AG AJ . . . ZI

Make Public Statement 0 4 180 635 33 41 . . . 207
Appeal 0 4 72 252 27 2 . . . 108

...
...

...
...

...
. . .

...
Use Unconventional Mass Violence 0 0 0 0 2 0 . . . 1

1.2 Data Preprocessing

The trend component in the proposed forecasting model
plays a critical role in capturing the underlying patterns or
long-term trends present in the geopolitical event data. We
use the exponential smoothing method to estimate the trend
for each individual component time series. Specifically, the
trend component V t = (Vt,ij) is calculated for each region-
event pair (i, j) using:

Vt,ij = αXt,ij + (1− α)Vt−1,ij ,

where: Vt,ij represents the trend component for country i
and event j at time t,Xt,ij is the observed count of the (i, j)-
th pair at time t, and 0 ≤ α ≤ 1 is the smoothing parameter,
which determines the weight assigned to the current obser-
vation compared to the previous trend value. A smaller α
gives more weight to historical observations, leading to a
smoother trend estimation.

The trend component T t is crucial in separating the long-
and short-term fluctuations of the data, enabling the model
to focus on capturing the underlying dynamics in the sta-
tionary component for more accurate forecasting. The ex-
ponential smoothing parameter is set to 0.125 based on em-
pirical considerations in this analysis. The detrended data
will be modeled as detailed in the next section.

2. METHODOLOGY

Let Xt be the observed (possibly detrended) data matrix
at time t of dimensions d1 × d2, where d1 and d2 are the
number of countries/regions and events respectively, t =
1, 2, . . . , T ,

Xt =

Xt,11 . . . Xt,1d2

...
. . .

...
Xt,d11 . . . Xt,d1d2

 .

A naive approach to modeling this data is fitting each
individual series using a univariate time series model, or
fitting a Vector Autoregressive model (VAR) to each country
(the counts over different events become a 20-dimensional
vector). These approaches ignore the complex correlation
across the events and/or regions hence is less accurate. We
employ a model that preserves the matrix structure of the
data to improve intepretability and predictability.

Protest, 15. Exhibit Force Posture, 16. Reduce Relations, 17. Coerce,
18. Assault, 19. Fight, 20. Use Unconventional Mass Violence.

2.1 Dynamic Matrix Factor Model

We use the Dynamic Matrix Factor Model (DMFM) pro-
posed in [9]. It combines matrix factor model for dimension
reduction and the matrix AR model for incorporating the
temporal dynamics into the factor process. This approach
allows us to produce accurate predictions for high dimen-
sional matrix time series data.

The underlying premise of the DMFM is rooted in the
idea that a select number of unobserved dynamic factors
are the primary drivers behind the observed co-movements
in the matrix time series. These latent factors, in turn, follow
a time series process, specifically represented by the Matrix
Autoregressive (MAR) model. The primary motivation for
embracing the DMFM lies in its efficacy, enabling us to har-
ness information from the entire d1 by d2 variable matrix
while leveraging only r1 by r2 factors.

For the time series data Xt, where t = 1, . . . , T , the
DMFM is characterized by:

Xt = Q1F tQ
′
2 +Et

F t = A1F t−1A
′
2 +Zt,

(2.1)

where F t is an r1 × r2 unobserved matrix of common fun-
damental factors; Q1 and Q2 denote the d1× r1 and d2× r2
front and back loading matrices respectively; A1 and A2

are time series coefficient matrices of dimensions r1×r1 and
r2 × r2 respectively; Et = (Et,ij) is a d1 × d2 error matrix
and Zt = (Zt,ij) is a r1 × r2 error matrix. We assume Et

and Zt are independent matrix white noise processes.
This model framework allows us to simultaneously cap-

ture the temporal dependencies inherent in the factor struc-
ture and the interactions among the observed variables, en-
hancing our ability to make informed inferences about the
underlying dynamics of the system.

2.2 Parameter Estimation

Following [9], the parameters in model (2.1) can be esti-
mated in two steps. The first step involves the estimation
of the coefficients of the factor model, using the procedure
in [8]. The core concept of the approach involves comput-
ing the autocovariance of the time series data, followed by
the construction of a matrix-form Box-Ljung type statistic.
In the context of the matrix factor model and the assump-
tion of white idiosyncratic noise, the loading matrices are
directly connected to the space defined by such a matrix.
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Specifically, we adopt the estimation procedure of [8] by us-
ing only the lag-1 sample autocovariance matrices. Let

M̂1 =
1

T − 1

T−1∑
t=1

XtX
′
t+1. (2.2)

To estimate the column space of Q1, denoted M(Q1), we

use Q̂1 = {q̂1,1, . . . , q̂r1,1} consisting of the r1 left singular

vectors of M̂1 corresponding to its leading singular values.
Similarly, the estimation of Q2 involves applying the same
procedure to the transposes of Xt.

Given the estimates of Q1 and Q2, it follows that

F̂ t = Q̂
′
1XtQ̂2.

The next step is to estimate the coefficients of the matrix
AR component of the model (the second part of (2.1).) Here,
we follow the estimation procedure in [3]. Assuming the co-
variance matrix of the error matrix Zt takes the structure

Cov(vec(Zt)) = Σc ⊗ Σr,

the log likelihood under normality is

− r1(T − 1) log |Σc| − r2(T − 1) log |Σr|

−
∑
t

tr(Σ−1
r (F t −A1F t−1A

′
2)Σ

−1
c (F t −A2F t−1A

′
2)

′).

Ignoring the estimation error in F̂ t and plugging them into
the likelihood function, the MLE can be found by iteratively
updating one of the following, while keeping the other three
fixed:

A←

(∑
t

F̂ tΣ
−1
c BF ′

t−1

)(∑
t

F̂ t−1B
′Σ−1

c BF̂
′
t−1

)−1

,

B ←

(∑
t

F̂
′
tΣ

−1
c AF̂ t−1

)(∑
t

F̂
′
t−1A

′Σ−1
c AF̂ t−1

)−1

,

Σc ←
∑

t R
′
tΣ

−1
r Rt

r1(T − 1)
,

Σr ←
∑

t RtΣ
−1
c R′

t

r2(T − 1)
,

where Rt = F̂ t −AF̂ t−1B
′.

2.3 Prediction under DMFM

Prediction is carried out in a straightforward manner.
For the h-step ahead prediction, we initially forecast F̃ t(h)
using the MAR model, and subsequently incorporate it into

the factor model to obtain X̃t(h). Specifically, let Ft be the
σ-field generated by {X1, . . . ,Xt}. Under the model:

E(Xt+1|Ft) = Q1E(F t+1|Ft)Q
′
2.

where E(F t+1|Ft) = A1F tA
′
2. Again, ignoring the estima-

tion error in F̂ t, then the one step ahead prediction is

X̃t(1) = Q1F̃ t(1)Q
′
2

= Q1A1F̂ gA
′
2Q

′
2

= Q1A1Q
′
1XtQ2A

′
2Q

′
2.

Similarly, the h-step ahead predictor is given by

X̃t(h) = Q1F̃ t(h)Q
′
2,

where F̃ t(h) = A1F̃ t(h− 1)A′
2.

2.4 Additional Models

The GDELT dataset displays significant heterogeneity, as
countries and regions vary greatly in size, and the frequency
of events can differ substantially by the nature of their types,
as seen in Figures 1 and 2. It is therefore necessary to incor-
porate alternative models since a single DMFM model may
not be able to capture and account for the nuanced pat-
terns and complexities inherent in the data. By considering
a range of simpler models, we aim to identify the special se-
ries that cannot be modeled by DMFM in a unified model,
especially those series with extremely low counts. This ap-
proach allows us to gain a deeper understanding of the intri-
cate dynamics at play, ultimately leading to more accurate
and meaningful predictions.

Specifically, three additional prediction methods are con-
sidered, based on 1) a pure exponential smoothing, 2) an
univeraite ARIMA(1,1,1) model and 3) a trivial prediction
(always predict the future value by zero). The main rea-
son for incorporating the trivial prediction is due to the
fact that a substantial number of countries have zero event
counts for some of the 20 events, as shown in Figure 3. The
ARIMA(1,1,1) model is particularly effective for capturing
the possible trend and more complex temporal dependence
for an individual series. It is an essential and simple tool for
forecasting in time series literature [2].

2.5 Prediction Averaging

In our ensemble approach, a weighted averaging predic-
tion scheme is implemented to enhance the accuracy by
capturing the different strengths of the different predic-
tion methods. The weights used for averaging are based on
the performance of each prediction methods. Specifically,
they are determined by the inverse of the Mean Absolute
Scaled Error (MASE, defined in Section 3.2) for each pre-
diction method. The MASE measures the forecast accuracy,
and method with a lower MASE value is assigned a higher
weight. The weights are normalized to ensure that they sum



Dynamic Matrix Factor Model for GDELT Data 5

Figure 3: The proportion of countries with zero frequency
for each event.

to 1. Specifically, for each modelm and horizon h = 1, 2, 3, 4,
let Em,ij,T (h) represent the rolling MASE of calculated over
a window of length 100 till the end of the training dataset for
country i and event j, the weight wm,ij,T (h) is determined
as:

wm,ij,T (h) =
[Em,ij,T (h)]

−1∑M
m=1[Em,ij,T (h)]−1

.

Subsequently, we obtain the final weighted predicted value
of Xij,T+h as:

X̂ij,T (h) =

M∑
m=1

wm,ij,T (h)X̃
(m)
ij,T (h). (2.3)

This aggregation technique leverages the strengths of
each individual prediction method, resulting in an ensem-
ble prediction that often outperforms any single model in
isolation.

3. MODEL RESULTS & DISCUSSION

3.1 The algorithm

Algorithm 1 outlines the sequential steps taken to fit the
data and compute the h-step ahead prediction. In the case
of the Dynamic Matrix Factor Model (DMFM), after pre-
diction, the trend components are reintegrated to yield a
forecast of the original series.

3.2 Performance Metrics

The predictions are evaluated using two metrics adopted
by the organizers of the ATD challenge. Specifically, predic-
tions are evaluated using the following two standard met-
rics and the performance is compared against baseline mod-
els on a holdout dataset. We express their definitions in a
slightly more general form, by allowing the metrics to be
evaluated over any time window from t0 +1 to t1, while the

Algorithm 1: Proposed Forecasting Algorithm

Data: GDELT data in matrix form: Xt,ij , t = 1, . . . , T
Result: h-step-ahead prediction: XT (h), h = 1, 2, . . .

1 for each pair (i, j) do
2 Estimate trend V t as in Section (1.2).
3 Let X∗

t = Xt − V t.
4 Obtain trend prediction V T (h) = V T for h = 1, 2, . . .

5 Estimate Q̂1 and Q̂2 as in Section (2.2) using the
detrended data X∗

t

6 Estimate F̂ t = Q̂
′
1X

∗
t Q̂2

7 Estimate time series coefficient matrices Â1 and Â2

8 for h = 1, 2, . . . do

9 Calculate F̃ T (h) = Â1F̂ T (h− 1)Â
′
2

10 Calculate X̃T (h) = Q̂1F̃ T (h)Q̂
′
2

11 Let X̂
(1)

T (h) = X̃T (h) + V T (h)

12 for each country, i = 1, . . . , d1 do
13 for each event, j = 1, . . . , d2 do
14 Fit ARIMA(1,1,1) on the original data Xt

15 Obtain ARIMA model h-step ahead predictions

X̂
(2)

T (h)

16 for h = 1, 2, . . . do

17 Let X̂
(3)

T (h) = V T (h)

18 for h = 1, 2, . . . do

19 Let X̂
(4)

T (h) = 0

20 for h = 1, 2, . . . do
21 Calculate the MASE for each prediction method
22 Calculate model weights as in Section (2.5)

23 Obtain the prediction X̂T (h) using the weighted
prediction average (2.3).



6 H. Ampadu-Kissi-Owusu et al.

Figure 4: Prediction performance comparison. The horizon-
tal lines represent the average performance of each model.

errors shown in Figure 4 are calculated on the entire holdout
dataset.

• Mean Absolute Scaled Error (MASE)

MASE(h) =

∑t1
t=t0+1

∑
ij |Xij,t+h − X̂ij,t(h)|∑t1

t=t0+1

∑
ij |Xij,t+h −Xij,t|

.

• Root Mean Square Error (RMSE)

RMSE(h) =

√√√√ 1

(t1 − t0)d1d2

t1∑
t=t0+1

∑
ij

(Xij,t+h − X̂ij,t(h))2.

3.3 Results

Comparing the predictive performances of different meth-
ods, we note that no single method outperforms others in all
horizons. For one-step ahead prediction, the ARIMA model
performs the best. The DMFM outperforms all other mod-
els in two- to four-week ahead prediction, and consequently
has the best overall performance. The exponential smooth-
ing method outperforms the ARIMA model in longer predic-
tion horizons and is close to the performance of the DMFM
for h ≥ 2. These observations provide a strong motivation to
consider prediction averaging approach in order to capital-
ize on the strengths of each method while mitigating their
weaknesses.

Figure 4 shows the overall out-of-sample rolling predic-
tion MASE of different prediction methods. Clearly the pre-
diction averaging approach provides the best overall predic-
tion performance. For longer term prediction, DMFM actu-
ally performs slightly better than the model averaging ap-
proach, though the model averaging approach automatically
adapts to different prediction horizons. The constant lines
show the average prediction MASE over the four prediction
horizons.

In the broader competition context, a holdout dataset,
mirroring the size of the data used for modeling, is em-
ployed to assess the algorithm’s comprehensive predictive
capabilities. Notably, the algorithm detailed in this paper
demonstrates markedly superior performance compared to
numerous benchmark models that are put forth. Table 2 is
a snapshot of the performance of the final model as it com-
pares to the baseline models developed by the competition
organizers. MASA and RMSE are defined above. SPEC is
Stock-keeping-oriented Prediction Error Costs [6] and ”Col-
umn Wins” shows the number of times a prediction method
has the best MASE and RMSE for each individual coun-
try/event averaged over time. Results from other competi-
tors are not shown. DMFM is the winner in all categories.

Team MASE RMSE SPEC # Col Wins

DMFM 0.92 50.06 9117.64 2981
TFT2 0.98 52.94 25553.63 1428
EWMA3 1.01 53.42 2485.89 694
DeepAR4 1.02 54.42 15916.29 406
Croston5 1.02 53.68 10574.11 1107
PredictLast6 1.06 57.51 2090.55 809
NBEATS7 1.08 57.71 133555.47 720
PredictMean8 1.88 77.71 135313.43 1210

Table 2. Leaderboard of model performance under different
metrics. Models other than ’DMFM’ represent baseline
models that were presented by competition organizers.

4. CONCLUSION

In this paper we use a prediction averaging approach to
obtain accurate prediction of high dimensional geopolitical
event counts, based on the dynamic matrix factor model
as the main method, and several other simpler prediction
methods as supplement for dealing with heterogeneity in the
data. For building the DMFM model, a data preprocessing
step is used to remove the underlying trends in the time
series before fitting the DMFM. This procedure plays a cru-
cial role in ensuring that the DMFM is based on stationary
data, which in turn enhances the accuracy and reliability
of our forecasts. DMFM uses a matrix factor model for ef-
fective dimension reduction and a matrix AR model on the
latent factors to capture temporal dynamics and to intro-
duce prediction capability. The model maintains the matrix
form of the data hence retains the crucial information on

2Temporal Fusion Transformer - Deep learning model integrating his-
torical data dynamically.
3Exponential Weighted Moving Average with emphasis on recent ob-
servations.
4Probabilistic forecasting with autoregressive recurrent networks.
5Forecasting method for intermittent demand.
6Uses the last observed value as the forecast.
7Neural network approach for interpretable time series forecasting.
8Uses the mean of historical values for forecasting.
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row classification (the countries) and column classification
(the event types). It allows effective modeling of the com-
plex inter-relationship among the event types and countries,
while maintaining model simplicity and interpretability. The
estimation follows a two-step procedure which is simple and
fast, without complex optimization procedures. In addition
to the primary model, we explore the inclusion of simpler
models to account for the heterogeneity within the dataset.
A simple prediction average approach is used. This com-
prehensive strategy allows us to harness the strengths of
various prediction methods, ensuring a robust and accurate
forecasting process that accommodates the intricacies of the
data.

A significant avenue for future research lies in the inves-
tigation of dynamic matrix factor models tailored for count
time series data. The model employed in this study operates
under the assumption of continuous Gaussian data, which
does not always hold true. A specialized model designed
to accommodate positive integer data has the potential to
yield more accurate forecasts and insights. This area of ex-
ploration could lead to significant advancements in modeling
techniques for count-based time series data.
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